Polyphenols as promising bioactive compounds

Abstract

Polyphenols are diverse and widespread bioactive plant-based compounds. These compounds are found in various foods such as berries, fruits, vegetables, cereals, nuts, coffee, cacao, spices, seeds. They are divided into phenolic acids, stilbenes, flavonoids, lignans depending on their molecular structure. They attract the attention of researchers due to wide range of biological effects on human body.

The purpose of this work was to analyze modern scientific publications on the biological effects of polyphenols.

Material and methods. The review is based on publications presented in the PubMed, Google Scholar, ResearchGate, Elsevier, eLIBRARY, Cyberleninka databases using “polyphenols”, “flavonoids”, “resveratrol”, “quercetin”, “catechins” as key words. Preference was given to original researches over the past 10 years published in refereed journals.

Results. Oxidative stress, chronic inflammation, microbiome disorders, insulin resistance, excessive protein glycation, and genotoxic effects are at the heart of the pathogenesis of many diseases, including those associated with age. A large amount of material has been accumulated on the antioxidant, anticarcinogenic, epigenetic, metabolic, geroprotective, anti-inflammatory and antiviral effects of polyphenols. This gives reasons to consider polyphenols as very promising micronutrients, which inclusion in the diet can reduce the risk of developing cardiovascular, oncological, neurodegenerative diseases, diabetes mellitus, obesity, metabolic syndrome, premature aging, that is, the main causes of death, a decrease in the duration and quality of life of a modern person.

Conclusion. Expanding the range of products enriched with polyphenols with their high bioavailability is a promising area of scientific research and development of production in order to prevent socially significant age-associated diseases.

Keywords:polyphenols; bioactivity; antioxidant; anti-inflammatory; organ protective; geroprotective; anticancerogenic properties

Funding. The research was financially supported by the Ministry of Education and Science of the Russian Federation as part of the project on the topic: "Creation of Russia's first high-tech production of lactulose prebiotic and functional dairy ingredients for import substitution in medicine, veterinary medicine, baby food, production of therapeutic and prophylactic products for humans and animals" (Agreement No. 075-11-2022-021 of 07.04.2022) in accordance with the Decree of the Government of the Russian Federation No. 218 of 09.04.2010 and carried out on the basis of the North Caucasus Federal University.

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Budkevich R.O., Anisimov G.S., Moskalev A.A.; collection and processing of material – Bobrysheva T.N., Zolotоreva M.S., Anisimov G.S., Bobryshev D.V.; writing the text – Bobrysheva T.N., Zolotоreva M.S., Bobryshev D.V.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Bobrysheva T.N., Anisimov G.S., Zolotoreva M.S., Bobryshev D.V., Budkevich R.O., Moskalev A.A. Polyphenols as promising bioactive compounds. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (1): 92–107. DOI: https://doi.org/10.33029/0042-8833-2023-92-1-92-107 (in Russian)

References

1. Singla R.K., Dubey A.K., Garg A., Sharma R., Fiorino M., Ameen S., et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019; 102 (5): 1397–400. DOI: https://doi.org/10.5740/jaoacint.19-0133

2. Zhang L., Han Z., Granato D. Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Adv Food Nutr Res. 2021; 98: 1–33. DOI: https://doi.org/10.1016/bs.afnr.2021.02.004

3. Truzzi F., Tibaldi C., Zhang Y., Dineli G., D’Amen E. An overview on dietary polyphenols and their Biopharmaceutical Classification System (BCS). Int J Mol Sci. 2021; 22 (11): 5514. DOI: https://doi.org/10.3390/ijms22115514

4. Jaganath I.B., Mullen W., Edwards C.A., Crozier A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res. 2006; 40 (10): 1035–46. DOI: https://doi.org/1080/10715760600771400

5. Ostroukhova L.A., Fedorova T.E., Onuchina N.A., Levchuk A.A., Babkin V.A. Quantitative content of extractives from wood, roots and bark of coniferous trees in siberia: larch (Larix sibirica L.), pines (Pinus sylvestris L.), fir (Abies sibirica L.), spruce (Picea obovata L.) and cedar (Pinus sibirica du tour.). Khimiya rastitel’nogo syr’ia [Chemistry of Plant Raw Material]. 2018; (4): 185–95. DOI: https://doi.org/10.14258/jcprm.2018044245 (in Russian)

6. Mamot T.V., Kushnerova N.F. Justification of the choice of raw sources from far east flora for receiving the pharmaceutical preparations. Izvestiya Samarskogo nauchnogo tsentra RAN [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2016; 18 (2): 146–9. (in Russian)

7. Chen G.-L., Munyao M.F., Xu Y.-B., Saleri F.D., Hu G.-W.W., Mutie F.M., et al. Antioxidant, anti-inflammatory activities and polyphenol profile of Rhamnus prinoides. Pharmaceuticals. 2020; 13 (4): 55. DOI: https://doi.org/10.3390/ph13040055

8. Ben Khedher M.R., Hafsa J., Haddad M., Hammami M. Inhibition of Protein Glycation by combined antioxidant and antiglycation constituents from a phenolic fraction of sage (Salvia officinalis L.). Plant Foods Hum Nutr. 2020; 75 (4): 505–11. DOI: https://doi.org/10.1007/s11130-020-00838-8

9. Tutelyan V.A., Nikityuk D.B., Baturin A.K., Vasil’ev A.V., Gapparov M.M.G., Zhilinskaya N.V., et al. Nutriome as the direction of the «main blow»: determination of physiological needs in macro- and micronutrients, minor biologically active substances. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 24–34. DOI: https://doi.org/10.24411/0042-8833-2020-10039 (in Russian)

10. Popova A.Yu., Tutelyan V.A., Nikityuk D.B. On the new (2021) Norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 6–19. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-6-19 (in Russian)

11. Tang J., Diao P., Shu X., Li L., Xiong L. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: in vitro assessment and a theoretical model. Biomed Res Int. 2019; 2019: 7039802. DOI: https://doi.org/10.1155/2019/7039802

12. Heřmánková E., Zatloukalová M., Biler M., Sokolova R., Banarova M.,Tzakos A.G., et al. Redox properties of individual quercetin moieties. Free Radic Biol Med. 2019; 143: 240–51. DOI: https://doi.org/10.1016/j.freeradbiomed.2019.08.001

13. Gonzalez-Alfonso J.L., Peñalver P., Ballesteros A.O., Morales J.C., Plou F.J., et al. Effect of α-glucosylation on the stability, antioxidant properties, toxicity, and neuroprotective activity of (–)-epigallocatechin gallate. Front Nutr. 2019; 6: 30. DOI: https://doi.org/10.3389/fnut.2019.00030

14. Basu P., Maier C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits // Pharmacognosy Res. 2016; 8 (4): 258. DOI: https://doi.org/10.4103/0974-8490.188875

15. Yang X., Kong F. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. J Sci Food Agric. 2016; 96 (3): 777–82. DOI: https://doi.org/10.1002/jsfa.7147

16. Kim S., Kim M., Kang M., Lee H.H.L., Cho C.H., Choi I., et al. Antioxidant effects of turmeric leaf extract against hydrogen peroxide-induced oxidative stress in vitro in vero cells and in vivo in zebrafish. Antioxidants. 2021; 10 (1): 112. DOI: https://doi.org/10.3390/antiox10010112

17. Franco R.R., Alves V.M.A., Zabinsky L.F.R., Justino A.B., Martins M.M., Saraiva A.L., et al. Antidiabetic potential of Bauhinia forficata Link leaves: a non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed Pharmacother. 2020; 123: 109798. DOI: https://doi.org/10.1016/j.biopha.2019.109798

18. Ntemiri A., Ghosh T., Gheller M., Tran T.T.T., Blum J.E., Pellanda P., et al. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients. 2020; 12 (9): 2800. DOI: https://doi.org/10.3390/nu12092800

19. Natella F., Beleli F., Gentili V., Ursini F., Scaccini C. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem. 2002; 50 (26): 7720–5. DOI: https://doi.org/10.1021/jf020346o

20. Malesev D., Kuntic V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J Serb Chem Soc. 2007; 72 (10): 921–39. DOI: https://doi.org/10.2298/JSC0710921M

21. Ianni A., Di Maio G., Pittia P., Grotta L., Perpetuini G., Tofalo R., et al. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J Sci Food Agric. 2019; 99 (7): 3635–43. DOI: https://doi.org/10.1002/jsfa.9584

22. Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi P., et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019; 25 (12): 1822–32. DOI: https://doi.org/10.1038/s41591-019-0675-0

23. Ying Z.H., Li H., Yu W., Yu C.-H.C. Iridin prevented against lipopolysaccharide-induced inflammatory responses of macrophages via inactivation of PKM2-mediated glycolytic pathways. J Inflamm Res. 2021; 14: 341–54. DOI: https://doi.org/10.2147/JIR.S292244

24. Ma H., Johnson S., Liu W., DaSilva N., Meschwitz S., Dain J., et al. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. Int J Mol Sci. 2018; 19 (2): 461. DOI: https://doi.org/10.3390/ijms19020461

25. Choi K.-C., Jung M., Lee Y., Yoon J.C., Kwon S.H., Kang H.B., et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced b lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 2009; 69 (2): 583–92. DOI: https://doi.org/10.1158/0008-5472.CAN-08-2442

26. Fujitaka Y., Hamada H., Uesugi D., Kuboki A., Shimoda K., Iwaki T., et al. Synthesis of daidzein glycosides, α-tocopherol glycosides, hesperetin glycosides by bioconversion and their potential for anti-allergic functional-foods and cosmetics. Molecules. 2019; 24 (16): 2975. DOI: https://doi.org/10.3390/molecules24162975

27. Spagnuolo L., Della Posta S., Fanali C., Dugo L., De Gara L. Antioxidant and antiglycation effects of polyphenol compounds extracted from hazelnut skin on advanced glycation end-products (AGEs) formation. Antioxidants. 2021; 10 (3): 424. DOI: https://doi.org/10.3390/antiox10030424

28. Ávila F., Ravello N., Manriquez C., Jiménez-Aspee F., Schmeda-Hirschmann G., Teoduloz C. Antiglycating effect of phenolics from the Chilean currant Ribes cucullatum under thermal treatment. Antioxidants. 2021; 10 (5): 665. DOI: https://doi.org/10.3390/antiox10030424

29. Miroliaei M., Aminjafari A., Ślusarczyk S., Nawrot-Hadzik I., Rahimmalek M., Matkowski A., et al. Inhibition of glycation-induced cytotoxicity, protein glycation, and activity of proteolytic enzymes by extract from Perovskia atriplicifolia roots. Pharmacogn Mag. 2017; 13 (51): 676. DOI: https://doi.org/10.4103/pm.pm_559_16

30. Ward A.B., Mir H., Kapur N., Dales G.N., Carriere P.P., Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 2018; 16 (1): 108. DOI: https://doi.org/10.1186/s12957-018-1400-z

31. Lotfizadeh R., Sepehri H., Attari F., Delohi L. Flavonoid calycopterin induces apoptosis in human prostate cancer cells in-vitro. Iran J Pharm Res. 2020; 19 (3): 391–401. DOI: https://doi.org/10.22037/ijpr.2020.113410.14283

32. Moradi M., Gholipour H., Sepehri H., Attari F., Delohi L., Arefian E., et al. Flavonoid calycopterin triggers apoptosis in triple-negative and ER-positive human breast cancer cells through activating different patterns of gene expression. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393 (11): 2145–56. DOI: https://doi.org/10.1007/s00210-020-01917-y

33. Singh C.K., Chhabra G., Ndiaye M.A., Siddiqui I.A., Panackal J.E., Mintie C.A., et al. Quercetin–resveratrol combination for prostate cancer management in tramp mice. Cancers (Basel). 2020; 12 (8): 2141. DOI: https://doi.org/10.3390/cancers12082141

34. Dolara P., Luceri C., Filippo C., Femia A.P., Giovanelli L., Caderni G., et al. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res. 2005; 591 (1–2): 237–46. DOI: https://doi.org/10.1016/j.mrfmmm.2005.04.022

35. Paluszczak J., Krajka-Kuzniak V., Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010; 192 (2): 119–25. DOI: https://doi.org/10.1016/j.toxlet.2009.10.010

36. Kuck D., Singh N., Lyko F., Medina-Franco J.L. Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg Med Chem. 2010; 18 (2): 822–9. DOI: https://doi.org/10.1016/j.bmc.2009.11.050

37. Tsang W.P., Kwok T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010; 21 (2): 140–6. DOI: https://doi.org/10.1016/j.jnutbio.2008.12.003

38. Izquierdo V., Palomera-Ávalos V., Pallàs M., Griñán-Ferré C. Resveratrol supplementation attenuates cognitive and molecular alterations under maternal high-fat diet intake: Epigenetic inheritance over generations. Int J Mol Sci. 2021; 22 (3): 1453. DOI: https://doi.org/10.3390/ijms22031453

39. Li X.-M., Li Z., Wang Y., Wang J.-Q., Yang P.-L. Quercetin inhibits the proliferation and aflatoxins biosynthesis of Aspergillus flavus. Toxins (Basel). 2019; 11 (3): 154. DOI: https://doi.org/10.3390/toxins11030154

40. Guo L., Sun Q., Gong S., Bi X., Jiang W., Xue W. Antimicrobial activity and action approach of the olive oil polyphenol extract against Listeria monocytogenes. Front Microbiol. 2019; 10: 1586. DOI: https://doi.org/10.3389/fmicb.2019.01586

41. Fei P., Xu Y., Zhao S., Gong S., Guo L. Olive oil polyphenol extract inhibits vegetative cells of Bacillus cereus isolated from raw milk. J Dairy Sci. 2019; 102 (5): 3894–902. DOI: https://doi.org/10.3168/jds.2018-15184

42. Guo L., Gong S., Wang Y.,Sun Q., Duo K., Fei P., et al. Antibacterial activity of olive oil polyphenol extract against Salmonella typhimurium and Staphylococcus aureus: possible mechanisms. Foodborne Pathog Dis. 2020; 17 (6): 396–403. DOI: https://doi.org/10.1089/fpd.2019.2713

43. Kong J., Zhang G., Xia K., Diao C., Yang X., Zuo X., et al. Tooth brushing using toothpaste containing theaflavins reduces the oral pathogenic bacteria in healthy adults. 3 Biotech. 2021; 11 (3): 150. DOI: https://doi.org/10.1007/s13205-021-02699-7

44. Shkol’nikova M.N., Aver’yanova E.V., Rozhnov E.D., Batashov E.S. Study of the antibacterial activity of sea buckthorn meal flavonoids. Industriya pitaniia [Food Industry]. 2020; 5 (3): 61–9. DOI: https://doi.org/10.29141/2500-1922-2020-5-3-7 (in Russian)

45. Khalil A., Tazeddinova D. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat Prod Bioprospect. 2020; 10 (6): 411–29. DOI: https://doi.org/10.1007/s13659-020-00271-z

46. Chiou W.-C., Chen J.C., Chen Y.T., Yang J.M., Hwang L.H., Lyu Y.S., et al. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochem Biophys Res Commun. 2022; 591: 130–6. DOI: https://doi.org/10.1007/s13659-020-00271-z

47. Du A., Zheng R., Disoma C., Li S., Chen Z., Li S., et al. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol. 2021; 176: 1–12. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.012

48. Wang X., Dong W., Zhang X.,Zho Z., Chen Y., Liu X., et al. Antiviral mechanism of tea polyphenols against porcine reproductive and respiratory syndrome virus. Pathogens. 2021; 10 (2): 202. DOI: https://doi.org/10.3390/pathogens10020202

49. Lopes B.R.P., da Costa M., Ribeiro A.G., da Silva T.F., Lima C.S., Caroso I.P., et al. Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion. Virus Res. 2020; 276: 197805. DOI: https://doi.org/10.1016/j.virusres.2019.197805

50. Shin M.-R., Kim M.J., Park H.J., Han J., Roh S.S. Beneficial effect of Taraxacum coreanum nakai via the activation of LKB1-AMPK signaling pathway on obesity. Evid Based Complement Altern Med. 2021; 2021: 6655599. DOI: https://doi.org/10.1155/2021/6655599

51. Jiang H., Horiuchi Y., Hironao K., Kitakaze T., Yamashita Y., Ashida H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J Clin Biochem Nutr. 2020; 67 (1): 75–83. DOI: https://doi.org/10.3164/jcbn.20-47

52. Petrov N.A., Sidorova Yu.S., Kochetkova A.A., Mazo V.K. Effect of blueberry polyphenols adsorbed on buckwheat flour on induced disorders of carbohydrate metabolism in C57BL/6c male mice. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (6): 82–90. DOI: https://doi.org/10.24411/0042-8833-2020-10081 (in Russian)

53. Hu Y., Xu J., Chen Q., Liu M., Wang S., Yu H., et al. Regulation effects of total flavonoids in Morus alba L. on hepatic cholesterol disorders in orotic acid induced NAFLD rats. BMC Complement Med Ther. 2020; 20 (1): 257. DOI: https://doi.org/10.1186/s12906-020-03052-w

54. Yang H., Yang T., Heng C., Zhou Y., Jiang Z., Qian X., et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. 2019; 33 (12): 3140–52. DOI: https://doi.org/10.1002/ptr.6486

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»