To the content
5 . 2023

Methods for the identification and quantification of microplastics in foods (a review)


The adverse effects of microplastics (MP) found in food on the health have recently been recognized as a new source of human health risks. In order to evaluate and minimize them, it is necessary to evaluate the exposure using sensitive and specific methods.

The aim of the research was the substantiation of methodological approaches to the identification and quantification of microplastics in food based on the analysis of literature data.

Material and methods. Literature selection was carried out using the PubMed international reference database for the period from 2014 to 2023 using keywords corresponding to the context of the research theme. A total of 159 sources were selected, of which 94 original and review papers were included in the review according to the criteria of their relevance to the problem under consideration, scientific reliability and completeness.

Results. At present, various approaches have been developed that make it possible to isolate MPs from complex bioorganic matrices (such as, for example, seafood), classify them by chemical composition, and quantify their content through the mass or number of particles. Among the most developed physic-chemical methods for the analysis of MPs are Fourier transform IR spectrometry and Raman microspectrometry, pyrolysis gas chromatography – mass spectrometry, thermogravimetric analysis, as well as approaches based on liquid chromatography, microfluorimetry, analytical scanning and transmission electron microscopy and others. Unsolved problems in the field of MP research in food include the high laboriousness and low performance of the identification technologies used, the lack of reference and standard samples of MP, the complexity of the equipment used, which makes it difficult to use it for routine hygienic control. The issue of the influence of MP aging degree on the results of its qualitative and quantitative determination has not been sufficiently studied. Some hopes in the field of development of rapid analysis of MTs are pinned on the use of aptamers.

Conclusion. Existing analytical methods make it possible to determine the content of MPs in environmental objects, but further improvement and validation of these methods is required in relation to the assessment of the content of MPs in various types of food.

Keywords:microplastics; food; detection; quantitative analysis; IR spectrometry; Raman effect; chromatography; electron microscopy; aptamers

Funding. The research was carried out at the expense of a subsidy for the fulfillment of the state task within the framework of the program of exploratory scientific research (topic of the Ministry of Education and Science of the Russian Federation No. FGMF-2023-0005).

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Khotimchenko S.A.; data collection – Kolobanov A.I., Sokolov I.E., Maisaya K.Z.; writing the text – Gmoshinski I.V.; editing – Shipelin V.A., approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Gmoshinski I.V., Shipelin V.A., Kolobanov A.I., Sokolov I.E., Maisaya K.Z., Khotimchenko S.A. Methods for the identification and quantification of microplastics in foods (a review). Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (5): 87–102. DOI: (in Russian)


1. Bai C.L., Liu L.Y., Hu Y.B., Zeng E.Y., Guo Y. Microplastics: a review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci Total Environ. 2022; 806 (pt 1): 150263. DOI:

2. Ivleva N.P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev. 2021; 121 (19): 11 886–936. DOI:

3. Yong C.Q.Y., Valiyaveettil S., Tang B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health. 2020; 17 (5): 1509. DOI:

4. Hirt N., Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics:a review of the literature. Part Fibre Toxicol. 2020; 17 (1): 57. DOI:

5. Bhagat J., Nishimura N., Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J Hazard Mater. 2021; 405: 123913. DOI:

6. Bowley J., Baker-Austin C., Porter A., Hartnell R., Lewis C. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends Microbiol. 2021; 29 (2): 107–16. DOI:

7. Huang Z., Hu B., Wang H. Analytical methods for microplastics in the environment: a review. Environ Chem Lett. 2023; 21 (1): 383–401. DOI:

8. Kwon J.H., Kim J.W., Pham T.D., Tarafdar A., Hong S., Chun S.H., et al. Microplastics in food: a review on analytical methods and challenges. Int J Environ Res Public Health. 2020; 17 (18): 6710. DOI:

9. Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Petrillo M., et al. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019; 36 (5): 639–73. DOI:

10. Rubio-Armendáriz C., Alejandro-Vega S., Paz-Montelongo S., Gutiérrez-Fernández Á.J., Carrascosa-Iruzubieta C.J., Hardisson-de la Torre A. Microplastics as emerging food contaminants: a challenge for food safety. Int J Environ Res Public Health. 2022; 19 (3): 1174. DOI: 390/ijerph19031174

11. Diaz-Basantes M.F., Conesa J.A., Fullana A. Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminants. Sustainability. 2020; 12 (14): 5514. DOI:

12. Prata J.C., Paço A., Reis V., da Costa J.P., Fernandes A.J.S., da Costa F.M., et al. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chem. 2020; 331: 127323. DOI:

13. Lachenmeier D.W., Kocareva J., Noack D., Kuballa T. Microplastic identification in German beer – an artefact of laboratory contamination? Dtsch Lebensm. Rundsch. 2015; 111 (10): 437–40. DOI:

14. Kosuth M., Mason S.A., Wattenberg E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One. 2018; 13 (4): e0194970. DOI:

15. Löder M.G.J., Kuczera M., Mintenig S., Lorenz C., Gerdts G. Focal plane array detector- based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015; 12 (5): 563–81. DOI:

16. Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018; 141: 307–16. DOI:

17. Iñiguez M.E., Conesa J.A., Fullana A. Microplastics in Spanish table salt. Sci Rep. 2017; 7 (1): 8620. DOI:

18. Käppler A., Windrich F., Löder M.G., Malanin M., Fischer D., Labrenz M., et al. Identification of microplastics by FTIR and Raman microscopy:a novel silicon filter substrate opens the important spectral range below 1300 cm-1 for FTIR transmission measurements. Anal Bioanal Chem. 2015; 407 (22): 6791–801. DOI:

19. Vinay Vinay Kumar B.N., Löschel L.A., Imhof H.K., Löder M.G.J., Laforsch C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ Pollut. 2021; 269: 116147. DOI:

20. Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.J., et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016; 408 (29): 8377–91. DOI:

21. Maes T., Jessop R., Wellner N., Haupt K., Mayes A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep. 2017; 7: 44501. DOI:

22. Hintersteiner I., Himmelsbach M., Buchberger W.W. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal Bioanal Chem. 2015; 407: 1253–9. DOI:

23. Grbic J., Nguyen B., Guo E., You J.B., Sinton D., Rochman C.M. Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett. 2019; 6 (2): 68–72. DOI:

24. Zhou X.X., Hao L.T., Wang H.Y., Li Y.J., Liu J.F. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry. Anal Chem. 2019; 91 (3): 1785–90. DOI:

25. Hermabessiere L., Himber C., Boricaud B., Kazour M., Amara R., Cassone A.L., et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem. 2018; 410 (25): 6663–76. DOI:

26. Gong J., Xie P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere. 2020; 254: 126790. DOI:

27. Abbasi S., Soltani N., Keshavarzi B., Moore F., Turner A., Hassanaghaei M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere. 2018; 205: 80–7. DOI:

28. Devriese L.I., van der Meulen M.D., Maes T., Bekaert K., Paul-Pont I., Frère L., et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull. 2015; 98 (1–2): 179–87. DOI:

29. Bellas J., Martínez-Armental J., Martínez-Cámara A., Besada V., Martínez-Gómez C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar Pollut Bull. 2016; 109 (1): 55–60. DOI:

30. Karlsson T.M., Vethaak A.D., Almroth B.C., Ariese F., van Velzen M., Hassellöv M., et al. Screening for microplastics in sediment, water, marine invertebrates and fish: method development and microplastic accumulation. Mar Pollut Bull. 2017; 122 (1–2): 403–8. DOI:

31. Zhang D., Cui Y., Zhou H., Jin C., Yu X., Xu Y., et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci Total Environ. 2020; 703: 134768. DOI: tenv.2019.134768

32. Yu Z., Peng B., Liu L.Y., Wong C.S., Zeng E.Y. and validation of an efficient method for processing microplastics in biota samples. Environ Toxicol Chem. 2019; 38 (7): 1400–8. DOI:

33. Cole M., Webb H., Lindeque P.K., Fileman E.S., Halsband C., Galloway T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 2014; 4: 4528. DOI:

34. Munno K., Helm P.A., Jackson D.A., Rochman C., Sims A. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem. 2018; 37(1): 91–8. DOI:

35. Löder M.G.J., Imhof H.K., Ladehoff M., Löschel L.A., Lorenz C., Mintenig S., et al. Enzymatic purific ation of microplastics in environmental samples. Environ Sci Technol. 2017; 51 (24): 14 283–92. DOI:

36. Mintenig S.M., Int-Veen I., Löder M.G.J., Primpke S., Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017; 108: 365–72. DOI:

37. Rist S., Steensgaard I.M., Guven O., Nielsen T.G., Jensen L.H., Moller L.F., et al. The fate of microplastics during uptake and depuration phases in a blue mussel exposure system. Environ Toxicol Chem. 2019; 38 (1): 99–105. DOI:

38. Hernandez L.M., Yousefi N., Tufenkji N. Are there nanoplastics in your personal care products? Environ Sci Technol Lett. 2017; 4 (7): 280–5. DOI:

39. Mintenig S.M., Baeuerlein P.S., Koelmans A.A., Dekker S.C., van Wezel A.P. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci Nano. 2018; 5: 1640–9. DOI:

40. Schwaferts C., Niessner R., Elsner M., Ivleva N.P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal Chem. 2019; 112: 52–65. DOI:

41. Schmidt R., Nachtnebel M., Dienstleder M., Mertschnigg S., Schroettner H., Zankel A., et al. Correlative SEM-Raman microscopy to reveal nanoplastics in complex environments. Micron. 2021; 144: 103034. DOI:

42. Castelvetro V., Corti A., Ceccarini A., Petri A., Vinciguerra V. Nylon 6 and nylon 6,6 micro- and nanoplastics: a first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges. J Hazard Mater. 2021; 407: 124364. DOI:

43. Castelvetro V., Corti A., Bianchi S., Ceccarini A., Manariti A., Vinciguerra V. Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in marine sediments and other environmental matrices. J Hazard Mater. 2020; 385: 121517. DOI:

44. Schwaferts C., Sogne V., Welz R., Meier F., Klein T., Niessner R., et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal Chem. 2020; 92 (8): 5813–20. DOI:

45. Pirok B.W.J., Abdulhussain N., Aalbers T., Wouters B., Peters R.A.H., Schoenmakers P.J. Nanoparticle analysis by online comprehensive two-dimensional liquid chromatography combining hydrodynamic chromatography and size-exclusion chromatography with intermediate sample transformation. Anal Chem. 2017; 89 (17): 9167–74. DOI:

46. Valsesia A., Quarato M., Ponti J., Fumagalli F., Gilliland D., Colpo P. Combining microcavity size selection with Raman microscopy for the characterization of nanoplastics in complex matrices. Sci Rep. 2021; 11 (1): 362. DOI:

47. Rochman C.M., Tahir A., Williams S.L., Baxa D.V., Lam R., Miller J.T., et al. Anthropogenic debris in seafood:plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015; 5: 14340. DOI:

48. Löder M.G.J., Gerdts G. Methodology used for the detection and identification of microplastics-a critical appraisal. In: M. Bergmann, L. Gutow, M. Klages (eds). Marine Anthropogenic Litter. Cham: Springer, 2015: 201–27. DOI:

49. Song Y.K., Hong S.H., Jang M., Han G.M., Rani M., Lee J., et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015; 93 (1–2): 202–9. DOI:

50. Lenz R., Enders K., Stedmon C.A., Mackenzie D.M.A., Nielsen T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015; 100 (1): 82–91. DOI:

51. Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M., et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl Spectrosc. 2020; 74 (9): 1012–47. DOI:

52. Costa C.Q.V., Cruz J., Martins J., Teodósio M.A.A., Jockusch S., Ramamurthy V., et al. Fluorescence sensing of microplastics on surfaces. Environ Chem Lett. 2021; 19: 1797–802. DOI:

53. Wagner J., Wang Z., Ghosal S., Rochman C., Gassel M., Wall S. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal Methods. 2017; 9: 1479–90. DOI:

54. Zhang W., Dong Z., Zhu L., Hou Y., Qiu Y. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano. 2020; 14 (7): 7920–6. DOI:

55. Ter Halle A., Ladirat L., Martignac M., Mingotaud A.F., Boyron O., Perez E. To what extent are microplastics from the open ocean weathered? Environ Pollut. 2017; 227: 167–74. DOI:

56. Auta H.S., Emenike C.U., Jayanthi B., Fauziah S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull. 2018; 127: 15–21. DOI:

57. Hernandez L.M., Xu E.G., Larsson H.C.E., Tahara R., Maisuria V.B., Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol. 2019; 53 (21): 12300–10. DOI:

58. Melo-Agustín P., Kozak E.R., de Jesús Perea-Flores M., Mendoza-Pérez J.A. Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques. Sci Total Environ. 2022; 828: 154434. DOI:

59. Busse K., Ebner I., Humpf H.U., Ivleva N., Kaeppler A., Oßmann B.E., Schymanski D. Comment on «Plastic teabags release billions of microparticles and nanoparticles into tea». Environ Sci Technol. 2020; 54 (21): 14134–5. DOI:

60. Watteau F., Dignac M.-F., Bouchard A., Revallier A., Houot S. Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst. 2018; 2: 81. DOI:

61. Gigault J., Pedrono B., Maxit B., Ter Halle A. Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano. 2016; 3: 346–50. DOI:

62. Renner G., Schmidt T.C., Schram J. Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Curr Opin Environ Sci Health. 2018; 1: 55–61. DOI:

63. Yang D., Shi H., Li L., Li J., Jabeen K., Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015; 49 (22): 13 622–7. DOI:

64. Prata J.C., da Costa J.P., Duarte A.C., Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem. 2019; 110: 150–9. DOI:

65. Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017; 231 (pt 2): 1256–64. DOI:

66. Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol. 2018; 52 (22): 13 279–88. DOI:

67. Primpke S., Wirth M., Lorenz C., Gerdts G. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal Bioanal Chem. 2018; 410 (21): 5131–41. DOI:

68. Simon M., van Alst N., Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res. 2018; 142: 1–9. DOI:

69. Kedzierski M., Falcou-Préfol M., Kerros M.E., Henry M., Pedrotti M.L., Bruzaud S. A machine learning algorithm for high throughput identification of FTIR spectra: application on microplastics collected in the Mediterranean Sea. Chemosphere. 2019; 234: 242–51. DOI:

70. Primpke S., Cross R.K., Mintenig S.M., Simon M., Vianello A., Gerdts G., et al. Toward the systematic identification of microplastics in the environment: evaluation of a new independ-ent software tool (SIMPLE) for spectroscopic analysis. Appl Spectrosc. 2020; 74 (9): 1127–38. DOI:

71. da Silva V.H., Murphy F., Amigo J.M., Stedmon C., Strand J. Classification and quantification of microplastics (<100 μm) using a focal plane array-Fourier transform infrared imaging system and machine learning. Anal Chem. 2020; 92 (20): 13 724–33. DOI:

72. Wander L., Vianello A., Vollertsen J., Westad F., Braun U., Paul A. Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples. Anal Methods. 2020; 12: 781−91. DOI:

73. Fischer D., Kaeppler A., Eichhorn K.J. Identification of microplastics in the marine environment by Raman microspectroscopy and imaging. Am Lab. 2015; 47 (3): 32–34. URL: (date of access June 07, 2023).

74. Sullivan G.L., Gallardo J.D., Jones E.W., Hollliman P.J., Watson T.M., Sarp S. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). Chemosphere. 2020; 249: 126179. DOI:

75. Li D., Shi Y., Yang L., Xiao L., Kehoe D.K., Gun’ko Y.K., et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food. 2020; 1 (11): 746–54. DOI:

76. Sgier L., Freimann R., Zupanic A., Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun. 2016; 7: 11587. DOI:

77. Ter Halle A., Jeanneau L., Martignac M., Jardé E., Pedrono B., Brach L., et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017; 51: 13 689–97. DOI:

78. Reichel J., Graßmann J., Letzel T., Drewes J.E. Systematic development of a simultaneous determination of plastic particle identity and adsorbed organic compounds by thermodesorption-pyrolysis GC/MS. Molecules. 2020; 25 (21): 4985. DOI:

79. Majewsky M., Bitter H., Eiche E., Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016; 568: 507–11. DOI:

80. Yu J., Wang P., Ni F., Cizdziel J., Wu D., Zhao Q., et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull. 2019; 145: 153–60. DOI:

81. Duemichen E., Eisentraut P., Celina M., Braun U. Automated thermal extraction-desorption gas chromatography mass spectrometry: a multifunctional tool for comprehensive characterization of polymers and their degradation products. J Chromatogr. A. 2019; 1592: 133–42. DOI:

82. Silva A.B., Bastos A.S., Justino C.I.L., da Costa J.P., Duarte A.C., Rocha-Santos T.A.P. Microplastics in the environment. Anal Chim Acta. 2018; 1017: 1–19. DOI:

83. Dümichen E., Barthel A.K., Braun U., Bannick C.G., Brand K., Jekel M., et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015; 85: 451–7. DOI:

84. Braun U., Altmann K., Herper D., Knefel M., Bednarz M., Bannick C.G. Smart filters for the analysis of microplastic in beverages filled in plastic bottles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021; 38 (4): 691–700. DOI:

85. Bolea-Fernandez E., Rua-Ibarz A., Velimirovic M., Tirez K., Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J Anal At Spectrom. 2020; 35 (3): 455−60. DOI:

86. Kaile N., Lindivat M., Elio J., Thuestad G., Crowley Q.G., Hoell I.A. Preliminary results from detection of microplastics in liquid samples using flow cytometry. Front Mar Sci. 2020; 7: 856–67. DOI:

87. Sorasan C., Edo C., González-Pleiter M., Fernández-Piñas F., Leganés F., Rodríguez A., et al. Generation of nanoplastics during the photoageing of low-density polyethylene. Environ Pollut 2021; 289: 117919. DOI: 1016/j.envpol.2021.117919

88. Li C., Gao Y., He S., Chi H., Li Z., Zhou X., et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environ Sci Technol Lett. 2021; 8: 633–8. DOI:

89. Ku T.H., Zhang T., Luo H., Yen T.M., Chen P., Han Y., et al Nucleic acid aptamers: an emerging tool for biotechnology and biomedical sensing. Sensors. 2015; 15: 16 281–313. DOI:

90. Cai S., Yan J., Xiong H., Liu Y., Peng D., Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 2018; 143: 5317–38. DOI:

91. Huang Z., Qiu L., Zhang T., Tan W. Integrating DNA nanotechnology with aptamers for biological and biomedical applications. Matter. 2021; 4: 461–89. DOI:

92. Zhang F., Wang Z., Vijver M.G., Peijnenburg W.J.G.M. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Sci Total Environ. 2022; 842: 156812. DOI:

93. Brander S.M., Renick V.C., Foley M.M., Steele C., Woo M., Lusher A., et al. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl Spectrosc. 2020; 74 (9): 1099–125. DOI:

94. Schymanski D., Oßmann B.E., Benismail N., Boukerma K., Dallmann G., von der Esch E., et al. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Anal. Bioanal. Chem. 2021; 413: 5969–94. DOI:

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»