To the content
5 . 2023

Methods for the identification and quantification of microplastics in foods (a review)

Abstract

The adverse effects of microplastics (MP) found in food on the health have recently been recognized as a new source of human health risks. In order to evaluate and minimize them, it is necessary to evaluate the exposure using sensitive and specific methods.

The aim of the research was the substantiation of methodological approaches to the identification and quantification of microplastics in food based on the analysis of literature data.

Material and methods. Literature selection was carried out using the PubMed international reference database for the period from 2014 to 2023 using keywords corresponding to the context of the research theme. A total of 159 sources were selected, of which 94 original and review papers were included in the review according to the criteria of their relevance to the problem under consideration, scientific reliability and completeness.

Results. At present, various approaches have been developed that make it possible to isolate MPs from complex bioorganic matrices (such as, for example, seafood), classify them by chemical composition, and quantify their content through the mass or number of particles. Among the most developed physic-chemical methods for the analysis of MPs are Fourier transform IR spectrometry and Raman microspectrometry, pyrolysis gas chromatography – mass spectrometry, thermogravimetric analysis, as well as approaches based on liquid chromatography, microfluorimetry, analytical scanning and transmission electron microscopy and others. Unsolved problems in the field of MP research in food include the high laboriousness and low performance of the identification technologies used, the lack of reference and standard samples of MP, the complexity of the equipment used, which makes it difficult to use it for routine hygienic control. The issue of the influence of MP aging degree on the results of its qualitative and quantitative determination has not been sufficiently studied. Some hopes in the field of development of rapid analysis of MTs are pinned on the use of aptamers.

Conclusion. Existing analytical methods make it possible to determine the content of MPs in environmental objects, but further improvement and validation of these methods is required in relation to the assessment of the content of MPs in various types of food.

Keywords:microplastics; food; detection; quantitative analysis; IR spectrometry; Raman effect; chromatography; electron microscopy; aptamers

Funding. The research was carried out at the expense of a subsidy for the fulfillment of the state task within the framework of the program of exploratory scientific research (topic of the Ministry of Education and Science of the Russian Federation No. FGMF-2023-0005).

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Khotimchenko S.A.; data collection – Kolobanov A.I., Sokolov I.E., Maisaya K.Z.; writing the text – Gmoshinski I.V.; editing – Shipelin V.A., approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Gmoshinski I.V., Shipelin V.A., Kolobanov A.I., Sokolov I.E., Maisaya K.Z., Khotimchenko S.A. Methods for the identification and quantification of microplastics in foods (a review). Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (5): 87–102. DOI: https://doi.org/10.33029/0042-8833-2023-92-5-87-102 (in Russian)

References

1. Bai C.L., Liu L.Y., Hu Y.B., Zeng E.Y., Guo Y. Microplastics: a review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci Total Environ. 2022; 806 (pt 1): 150263. DOI: https://doi.org/10.1016/j.scitotenv.2021.150263

2. Ivleva N.P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev. 2021; 121 (19): 11 886–936. DOI: https://doi.org/10.1021/acs.chemrev.1c00178

3. Yong C.Q.Y., Valiyaveettil S., Tang B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health. 2020; 17 (5): 1509. DOI: https://doi.org/10.3390/ijerph17051509

4. Hirt N., Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics:a review of the literature. Part Fibre Toxicol. 2020; 17 (1): 57. DOI: https://doi.org/10.1186/s12989-020-00387-7

5. Bhagat J., Nishimura N., Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J Hazard Mater. 2021; 405: 123913. DOI: https://doi.org/10.1016/j.jhazmat.2020.123913

6. Bowley J., Baker-Austin C., Porter A., Hartnell R., Lewis C. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends Microbiol. 2021; 29 (2): 107–16. DOI: https://doi.org/10.1016/j.tim.2020.06.011

7. Huang Z., Hu B., Wang H. Analytical methods for microplastics in the environment: a review. Environ Chem Lett. 2023; 21 (1): 383–401. DOI: https://doi.org/10.1007/s10311-022-01525-7

8. Kwon J.H., Kim J.W., Pham T.D., Tarafdar A., Hong S., Chun S.H., et al. Microplastics in food: a review on analytical methods and challenges. Int J Environ Res Public Health. 2020; 17 (18): 6710. DOI: https://doi.org/10.3390/ijerph17186710

9. Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Petrillo M., et al. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019; 36 (5): 639–73. DOI: https://doi.org/10.1080/19440049.2019.1583381

10. Rubio-Armendáriz C., Alejandro-Vega S., Paz-Montelongo S., Gutiérrez-Fernández Á.J., Carrascosa-Iruzubieta C.J., Hardisson-de la Torre A. Microplastics as emerging food contaminants: a challenge for food safety. Int J Environ Res Public Health. 2022; 19 (3): 1174. DOI: https://doi.org/10.3 390/ijerph19031174

11. Diaz-Basantes M.F., Conesa J.A., Fullana A. Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminants. Sustainability. 2020; 12 (14): 5514. DOI: https://doi.org/10.3390/su12145514

12. Prata J.C., Paço A., Reis V., da Costa J.P., Fernandes A.J.S., da Costa F.M., et al. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chem. 2020; 331: 127323. DOI: https://doi.org/10.1016/j.foodchem.2020.127323

13. Lachenmeier D.W., Kocareva J., Noack D., Kuballa T. Microplastic identification in German beer – an artefact of laboratory contamination? Dtsch Lebensm. Rundsch. 2015; 111 (10): 437–40. DOI: https://doi.org/10.5281/zenodo.1250715

14. Kosuth M., Mason S.A., Wattenberg E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One. 2018; 13 (4): e0194970. DOI: https://doi.org/10.1371/journal.pone.0194970

15. Löder M.G.J., Kuczera M., Mintenig S., Lorenz C., Gerdts G. Focal plane array detector- based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015; 12 (5): 563–81. DOI: https://doi.org/10.1071/EN14205

16. Oßmann B.E., Sarau G., Holtmannspötter H., Pischetsrieder M., Christiansen S.H., Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018; 141: 307–16. DOI: https://doi.org/10.1016/j.watres.2018.05.027

17. Iñiguez M.E., Conesa J.A., Fullana A. Microplastics in Spanish table salt. Sci Rep. 2017; 7 (1): 8620. DOI: https://doi.org/10.1038/s41598-017-09128-x

18. Käppler A., Windrich F., Löder M.G., Malanin M., Fischer D., Labrenz M., et al. Identification of microplastics by FTIR and Raman microscopy:a novel silicon filter substrate opens the important spectral range below 1300 cm-1 for FTIR transmission measurements. Anal Bioanal Chem. 2015; 407 (22): 6791–801. DOI: https://doi.org/10.1007/s00216-015-8850

19. Vinay Vinay Kumar B.N., Löschel L.A., Imhof H.K., Löder M.G.J., Laforsch C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ Pollut. 2021; 269: 116147. DOI: https://doi.org/10.1016/j.envpol.2020.116147

20. Käppler A., Fischer D., Oberbeckmann S., Schernewski G., Labrenz M., Eichhorn K.J., et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016; 408 (29): 8377–91. DOI: https://doi.org/10.1007/s00216-016-9956-3

21. Maes T., Jessop R., Wellner N., Haupt K., Mayes A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep. 2017; 7: 44501. DOI: https://doi.org/10.1038/srep44501

22. Hintersteiner I., Himmelsbach M., Buchberger W.W. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal Bioanal Chem. 2015; 407: 1253–9. DOI: https://doi.org/10.1007/s00216-014-8318-2

23. Grbic J., Nguyen B., Guo E., You J.B., Sinton D., Rochman C.M. Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett. 2019; 6 (2): 68–72. DOI: https://doi.org/10.1021/acs.estlett.8b00671

24. Zhou X.X., Hao L.T., Wang H.Y., Li Y.J., Liu J.F. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography-mass spectrometry. Anal Chem. 2019; 91 (3): 1785–90. DOI: https://doi.org/10.1021/acs.analchem.8b04729

25. Hermabessiere L., Himber C., Boricaud B., Kazour M., Amara R., Cassone A.L., et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem. 2018; 410 (25): 6663–76. DOI: https://doi.org/10.1007/s00216-018-1279-0

26. Gong J., Xie P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere. 2020; 254: 126790. DOI: https://doi.org/10.1016/j.chemosphere.2020.126790

27. Abbasi S., Soltani N., Keshavarzi B., Moore F., Turner A., Hassanaghaei M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere. 2018; 205: 80–7. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.076

28. Devriese L.I., van der Meulen M.D., Maes T., Bekaert K., Paul-Pont I., Frère L., et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull. 2015; 98 (1–2): 179–87. DOI: https://doi.org/10.1016/j.marpolbul.2015.06.051

29. Bellas J., Martínez-Armental J., Martínez-Cámara A., Besada V., Martínez-Gómez C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar Pollut Bull. 2016; 109 (1): 55–60. DOI: https://doi.org/10.1016/j.marpolbul.2016.06.026

30. Karlsson T.M., Vethaak A.D., Almroth B.C., Ariese F., van Velzen M., Hassellöv M., et al. Screening for microplastics in sediment, water, marine invertebrates and fish: method development and microplastic accumulation. Mar Pollut Bull. 2017; 122 (1–2): 403–8. DOI: https://doi.org/10.1016/j.marpolbul.2017.06.081

31. Zhang D., Cui Y., Zhou H., Jin C., Yu X., Xu Y., et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci Total Environ. 2020; 703: 134768. DOI: https://doi.org/10.1016/j.scito tenv.2019.134768

32. Yu Z., Peng B., Liu L.Y., Wong C.S., Zeng E.Y. and validation of an efficient method for processing microplastics in biota samples. Environ Toxicol Chem. 2019; 38 (7): 1400–8. DOI: https://doi.org/10.1002/etc.4416

33. Cole M., Webb H., Lindeque P.K., Fileman E.S., Halsband C., Galloway T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 2014; 4: 4528. DOI: https://doi.org/10.1038/srep04528

34. Munno K., Helm P.A., Jackson D.A., Rochman C., Sims A. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem. 2018; 37(1): 91–8. DOI: https://doi.org/10.1002/etc.3935

35. Löder M.G.J., Imhof H.K., Ladehoff M., Löschel L.A., Lorenz C., Mintenig S., et al. Enzymatic purific ation of microplastics in environmental samples. Environ Sci Technol. 2017; 51 (24): 14 283–92. DOI: https://doi.org/10.1021/acs.est.7b03055

36. Mintenig S.M., Int-Veen I., Löder M.G.J., Primpke S., Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017; 108: 365–72. DOI: https://doi.org/10.1016/j.watres.2016.11.015

37. Rist S., Steensgaard I.M., Guven O., Nielsen T.G., Jensen L.H., Moller L.F., et al. The fate of microplastics during uptake and depuration phases in a blue mussel exposure system. Environ Toxicol Chem. 2019; 38 (1): 99–105. DOI: https://doi.org/10.1002/etc.4285

38. Hernandez L.M., Yousefi N., Tufenkji N. Are there nanoplastics in your personal care products? Environ Sci Technol Lett. 2017; 4 (7): 280–5. DOI: https://doi.org/10.1021/acs.estlett.7b00187

39. Mintenig S.M., Baeuerlein P.S., Koelmans A.A., Dekker S.C., van Wezel A.P. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ Sci Nano. 2018; 5: 1640–9. DOI: https://doi.org/10.1039/C8EN00186C

40. Schwaferts C., Niessner R., Elsner M., Ivleva N.P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal Chem. 2019; 112: 52–65. DOI: https://doi.org/10.1016/j.trac.2018.12.014

41. Schmidt R., Nachtnebel M., Dienstleder M., Mertschnigg S., Schroettner H., Zankel A., et al. Correlative SEM-Raman microscopy to reveal nanoplastics in complex environments. Micron. 2021; 144: 103034. DOI: https://doi.org/10.1016/j.micron.2021.103034

42. Castelvetro V., Corti A., Ceccarini A., Petri A., Vinciguerra V. Nylon 6 and nylon 6,6 micro- and nanoplastics: a first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges. J Hazard Mater. 2021; 407: 124364. DOI: https://doi.org/10.1016/j.jhazmat.2020.124364

43. Castelvetro V., Corti A., Bianchi S., Ceccarini A., Manariti A., Vinciguerra V. Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in marine sediments and other environmental matrices. J Hazard Mater. 2020; 385: 121517. DOI: https://doi.org/10.1016/j.jhazmat.2019.121517

44. Schwaferts C., Sogne V., Welz R., Meier F., Klein T., Niessner R., et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal Chem. 2020; 92 (8): 5813–20. DOI: https://doi.org/10.1021/acs.analchem.9b05336

45. Pirok B.W.J., Abdulhussain N., Aalbers T., Wouters B., Peters R.A.H., Schoenmakers P.J. Nanoparticle analysis by online comprehensive two-dimensional liquid chromatography combining hydrodynamic chromatography and size-exclusion chromatography with intermediate sample transformation. Anal Chem. 2017; 89 (17): 9167–74. DOI: https://doi.org/10.1021/acs.analchem.7b01906

46. Valsesia A., Quarato M., Ponti J., Fumagalli F., Gilliland D., Colpo P. Combining microcavity size selection with Raman microscopy for the characterization of nanoplastics in complex matrices. Sci Rep. 2021; 11 (1): 362. DOI: https://doi.org/10.1038/s41598-020-79714-z

47. Rochman C.M., Tahir A., Williams S.L., Baxa D.V., Lam R., Miller J.T., et al. Anthropogenic debris in seafood:plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015; 5: 14340. DOI: https://doi.org/10.1038/srep14340

48. Löder M.G.J., Gerdts G. Methodology used for the detection and identification of microplastics-a critical appraisal. In: M. Bergmann, L. Gutow, M. Klages (eds). Marine Anthropogenic Litter. Cham: Springer, 2015: 201–27. DOI: https://doi.org/10.1007/978-3-319-16510-3_8

49. Song Y.K., Hong S.H., Jang M., Han G.M., Rani M., Lee J., et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015; 93 (1–2): 202–9. DOI: https://doi.org/10.1016/j.marpolbul.2015.01.015

50. Lenz R., Enders K., Stedmon C.A., Mackenzie D.M.A., Nielsen T.G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015; 100 (1): 82–91. DOI: https://doi.org/10.1016/j.marpolbul.2015.09.026

51. Primpke S., Christiansen S.H., Cowger W., De Frond H., Deshpande A., Fischer M., et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl Spectrosc. 2020; 74 (9): 1012–47. DOI: https://doi.org/10.1177/0003702820921465

52. Costa C.Q.V., Cruz J., Martins J., Teodósio M.A.A., Jockusch S., Ramamurthy V., et al. Fluorescence sensing of microplastics on surfaces. Environ Chem Lett. 2021; 19: 1797–802. DOI: https://doi.org/10.1007/s10311-020-01136-0

53. Wagner J., Wang Z., Ghosal S., Rochman C., Gassel M., Wall S. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal Methods. 2017; 9: 1479–90. DOI: https://doi.org/10.1039/C6AY02396G

54. Zhang W., Dong Z., Zhu L., Hou Y., Qiu Y. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano. 2020; 14 (7): 7920–6. DOI: https://doi.org/10.1021/acsnano.0c02878

55. Ter Halle A., Ladirat L., Martignac M., Mingotaud A.F., Boyron O., Perez E. To what extent are microplastics from the open ocean weathered? Environ Pollut. 2017; 227: 167–74. DOI: https://doi.org/10.1016/j.envpol.2017.04.051

56. Auta H.S., Emenike C.U., Jayanthi B., Fauziah S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull. 2018; 127: 15–21. DOI: https://doi.org/10.1016/j.marpolbul.2017.11.036

57. Hernandez L.M., Xu E.G., Larsson H.C.E., Tahara R., Maisuria V.B., Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol. 2019; 53 (21): 12300–10. DOI: https://doi.org/10.1021/acs.est.9b02540

58. Melo-Agustín P., Kozak E.R., de Jesús Perea-Flores M., Mendoza-Pérez J.A. Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques. Sci Total Environ. 2022; 828: 154434. DOI: https://doi.org/10.1016/j.scitotenv.2022.154434

59. Busse K., Ebner I., Humpf H.U., Ivleva N., Kaeppler A., Oßmann B.E., Schymanski D. Comment on «Plastic teabags release billions of microparticles and nanoparticles into tea». Environ Sci Technol. 2020; 54 (21): 14134–5. DOI: https://doi.org/10.1021/acs.est.0c03182

60. Watteau F., Dignac M.-F., Bouchard A., Revallier A., Houot S. Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst. 2018; 2: 81. DOI: https://doi.org/10.3389/fsufs.2018.00081

61. Gigault J., Pedrono B., Maxit B., Ter Halle A. Marine plastic litter: the unanalyzed nano-fraction. Environ Sci Nano. 2016; 3: 346–50. DOI: https://doi.org/10.1039/C6EN00008H

62. Renner G., Schmidt T.C., Schram J. Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Curr Opin Environ Sci Health. 2018; 1: 55–61. DOI: https://doi.org/10.1016/j.coesh.2017.11.001

63. Yang D., Shi H., Li L., Li J., Jabeen K., Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015; 49 (22): 13 622–7. DOI: https://doi.org/10.1021/acs.est.5b03163

64. Prata J.C., da Costa J.P., Duarte A.C., Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem. 2019; 110: 150–9. DOI: https://doi.org/10.1016/j.trac.2018.10.029

65. Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017; 231 (pt 2): 1256–64. DOI: https://doi.org/10.1016/j.envpol.2017.08.074

66. Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol. 2018; 52 (22): 13 279–88. DOI: https://doi.org/10.1021/acs.est.8b03438

67. Primpke S., Wirth M., Lorenz C., Gerdts G. Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy. Anal Bioanal Chem. 2018; 410 (21): 5131–41. DOI: https://doi.org/10.1007/s00216-018-1156-x

68. Simon M., van Alst N., Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res. 2018; 142: 1–9. DOI: https://doi.org/10.1016/j.watres.2018.05.019

69. Kedzierski M., Falcou-Préfol M., Kerros M.E., Henry M., Pedrotti M.L., Bruzaud S. A machine learning algorithm for high throughput identification of FTIR spectra: application on microplastics collected in the Mediterranean Sea. Chemosphere. 2019; 234: 242–51. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.113

70. Primpke S., Cross R.K., Mintenig S.M., Simon M., Vianello A., Gerdts G., et al. Toward the systematic identification of microplastics in the environment: evaluation of a new independ-ent software tool (SIMPLE) for spectroscopic analysis. Appl Spectrosc. 2020; 74 (9): 1127–38. DOI: https://doi.org/10.1177/0003702820917760

71. da Silva V.H., Murphy F., Amigo J.M., Stedmon C., Strand J. Classification and quantification of microplastics (<100 μm) using a focal plane array-Fourier transform infrared imaging system and machine learning. Anal Chem. 2020; 92 (20): 13 724–33. DOI: https://doi.org/10.1021/acs.analchem.0c01324

72. Wander L., Vianello A., Vollertsen J., Westad F., Braun U., Paul A. Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples. Anal Methods. 2020; 12: 781−91. DOI: https://doi.org/10.1039/C9AY02483B

73. Fischer D., Kaeppler A., Eichhorn K.J. Identification of microplastics in the marine environment by Raman microspectroscopy and imaging. Am Lab. 2015; 47 (3): 32–34. URL: https://www.americanlaboratory.com/914-Application-Notes/173574-Identifi-cation-of-Microplastics-in-the-Marine-Environment-by-Raman-Microspectroscopy-and-Imaging/ (date of access June 07, 2023).

74. Sullivan G.L., Gallardo J.D., Jones E.W., Hollliman P.J., Watson T.M., Sarp S. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). Chemosphere. 2020; 249: 126179. DOI: https://doi.org/10.1016/j.chemosphere.2020.126179

75. Li D., Shi Y., Yang L., Xiao L., Kehoe D.K., Gun’ko Y.K., et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food. 2020; 1 (11): 746–54. DOI: https://doi.org/10.1038/s43016-020-00171-y

76. Sgier L., Freimann R., Zupanic A., Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun. 2016; 7: 11587. DOI: https://doi.org/10.1038/ncomms11587

77. Ter Halle A., Jeanneau L., Martignac M., Jardé E., Pedrono B., Brach L., et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017; 51: 13 689–97. DOI: https://doi.org/10.1021/acs.est.7b03667

78. Reichel J., Graßmann J., Letzel T., Drewes J.E. Systematic development of a simultaneous determination of plastic particle identity and adsorbed organic compounds by thermodesorption-pyrolysis GC/MS. Molecules. 2020; 25 (21): 4985. DOI: https://doi.org/10.3390/molecules25214985

79. Majewsky M., Bitter H., Eiche E., Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016; 568: 507–11. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.017

80. Yu J., Wang P., Ni F., Cizdziel J., Wu D., Zhao Q., et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull. 2019; 145: 153–60. DOI: https://doi.org/10.1016/j.marpolbul.2019.05.037

81. Duemichen E., Eisentraut P., Celina M., Braun U. Automated thermal extraction-desorption gas chromatography mass spectrometry: a multifunctional tool for comprehensive characterization of polymers and their degradation products. J Chromatogr. A. 2019; 1592: 133–42. DOI: https://doi.org/10.1016/j.chroma.2019.01.033

82. Silva A.B., Bastos A.S., Justino C.I.L., da Costa J.P., Duarte A.C., Rocha-Santos T.A.P. Microplastics in the environment. Anal Chim Acta. 2018; 1017: 1–19. DOI: https://doi.org/10.1016/j.aca.2018.02.043

83. Dümichen E., Barthel A.K., Braun U., Bannick C.G., Brand K., Jekel M., et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015; 85: 451–7. DOI: https://doi.org/10.1016/j.watres.2015.09.002

84. Braun U., Altmann K., Herper D., Knefel M., Bednarz M., Bannick C.G. Smart filters for the analysis of microplastic in beverages filled in plastic bottles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021; 38 (4): 691–700. DOI: https://doi.org/10.1080/19440049.2021.1889042

85. Bolea-Fernandez E., Rua-Ibarz A., Velimirovic M., Tirez K., Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J Anal At Spectrom. 2020; 35 (3): 455−60. DOI: https://doi.org/10.1039/C9JA00379G

86. Kaile N., Lindivat M., Elio J., Thuestad G., Crowley Q.G., Hoell I.A. Preliminary results from detection of microplastics in liquid samples using flow cytometry. Front Mar Sci. 2020; 7: 856–67. DOI: https://doi.org/10.3389/fmars.2020.552688

87. Sorasan C., Edo C., González-Pleiter M., Fernández-Piñas F., Leganés F., Rodríguez A., et al. Generation of nanoplastics during the photoageing of low-density polyethylene. Environ Pollut 2021; 289: 117919. DOI: https://doi.org/10. 1016/j.envpol.2021.117919

88. Li C., Gao Y., He S., Chi H., Li Z., Zhou X., et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environ Sci Technol Lett. 2021; 8: 633–8. DOI: https://doi.org/10.1021/acs.estlett.1c00369

89. Ku T.H., Zhang T., Luo H., Yen T.M., Chen P., Han Y., et al Nucleic acid aptamers: an emerging tool for biotechnology and biomedical sensing. Sensors. 2015; 15: 16 281–313. DOI: https://doi.org/10.3390/s150716281

90. Cai S., Yan J., Xiong H., Liu Y., Peng D., Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 2018; 143: 5317–38. DOI: https://doi.org/10.1039/c8an01467a

91. Huang Z., Qiu L., Zhang T., Tan W. Integrating DNA nanotechnology with aptamers for biological and biomedical applications. Matter. 2021; 4: 461–89. DOI: https://doi.org/10.1016/j.matt.2020.11.002

92. Zhang F., Wang Z., Vijver M.G., Peijnenburg W.J.G.M. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Sci Total Environ. 2022; 842: 156812. DOI: https://doi.org/10.1016/j.scitotenv.2022.156812

93. Brander S.M., Renick V.C., Foley M.M., Steele C., Woo M., Lusher A., et al. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl Spectrosc. 2020; 74 (9): 1099–125. DOI: https://doi.org/10.1177/0003702820945713

94. Schymanski D., Oßmann B.E., Benismail N., Boukerma K., Dallmann G., von der Esch E., et al. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Anal. Bioanal. Chem. 2021; 413: 5969–94. DOI: https://doi.org/10.1007/s00216-021-03498-y

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»