To the content
5 . 2020

Comparative analysis of enteral feeding practices for prevention of gastrointestinal complications in infants with ductus-dependent congenital heart diseases

Abstract

Mesenterial hypoperfusion is one of the main pathogenetic factors of necrotizing enterocolitis (NEC) in infants with ductus-dependent congenital heart diseases. NEC in infants undergoing congenital heart surgery increases mortality and length of hospital stay. NEC is also associated with adverse neurodevelopmental outcome. Optimization of enteral feeding can reduce the risk of gastrointestinal complications. NEC risk factors in infants with congenital heart are of special interest in the literature. This article discusses criteria for enteral feeding initiation and increasing preoperatively and after heart surgery. Enteral feeding protocols of leading cardiac surgical centers are reviewed. Practices to provide high energy and nutrient consumption in infants with congenital heart disease are described.

Keywords:ductus-dependent congenital heart diseases, enteral feeding, necrotizing enterocolitis, mesenteric hypoperfusion

Funding. The study did not have sponsorship.

Conflict of interests. The authors declare no conflict of interests.

For citation: Petrova N.A., Kaplina A.V., Kurzina E.A., Nikiforov V.G., Fedoseeva T.A., Bairov V.G. Comparative analysis of enteral feeding practices for prevention of gastrointestinal complications in infants with ductus-dependent congenital heart diseases. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (5): 44-58. DOI: https://doi.org/10.24411/0042-8833-2020-10065 (in Russian)

References

1. Carlo W.F., Kimball T.R., Michelfelder E.C., Border W.L. Persistent diastolic flow reversal in abdominal aortic Doppler-flow profiles is associated with an increased risk of necrotizing enterocolitis in term infants with congenital heart disease. Pediatrics. 2007; 119 (2): 330–5. DOI: https://doi.org/10.1542/peds.2006-2640

2. Iannucci G.J, Oster M.E., Mahle W.T. Necrotising enterocolitis in infants with congenital heart disease: the role of enteral feeds. Cardiol Young. 2013; 23 (4): 553–9. DOI: https://doi.org/10.1017/s1047951112001370

3. Lau P.E., Cruz S.M., Ocampo E.C., et al. Necrotizing enterocolitis in patients with congenital heart disease: a single center experience. J Pediatr Surg. 2018; 53 (5): 914–7. DOI: https://doi.org/10.1016/j.jpedsurg.2018.02.014

4. Day T.G., Dionisio D., Zannino D., et al. Enteral feeding in duct-dependent congenital heart disease. J Neonatal Perinatal Med. 2019; 12 (1): 9–12. DOI: https://doi.org/10.3233/npm-1861

5. Kessler U., Hau E.-M., Kordasz M., et al. Congenital heart disease increases mortality in neonates with necrotizing enterocolitis. Front Pediatr. 2018; 6: 312. DOI: https://doi.org/10.3389/fped.2018.00312

6. Hintz S.R. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics. 2005; 115 (3): 696–703. DOI: https://doi.org/10.1542/peds.2004-0569

7. Mehta N.M., Skillman H.E., Irving S.Y., Coss-Bu J.A., Vermilyea S., Farrington E.A., et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of critical care medicine and American society for parenteral and enteral nutrition. JPEN J Parenter Enteral Nutr. 2017; 41 (5): 706–42. DOI: https://doi.org/10.1177/0148607117711387

8. Clinical guidelines for the management of children with congenital heart disease. In: L.A. Bokeria (ed.). Moscow: NTsSSKh im. A.N. Bakuleva, 2014: 342 p. (in Russian)

9. Bokeria L.A. Modern trends in the development of cardiovascular surgery. Annaly khirurgii [Annals of Surgery]. 2016; 21 (1–2): 10–8. DOI: https://doi.org/10.18821/1560-9502-2016-21-1-10-18 (in Russian)

10. Nadiradze Z.Z., Bakhareva Yu.A., Nadiradze O.V., Neznakhina L.V. Nutritional support in children after cardiosurgical operations. Obshchaya reanimatologiya [General Resuscitation]. 2010; VI (4): 38–42. DOI: https://doi.org/10.15360/1813-9779-2010-4-38 (in Russian)

11. Diuzhikov A.A., Zhivova L.V., Kislitskiy A.I., Putilina N.I. Enteral feeding of the infants after cardiosurgical interventions. Voprosy sovremennoy pediatrii [Problems of Modern Pediatrics]. 2007; 6 (4): 113–7. (in Russian)

12. Petrova N.A., Kurzina E.A., Nikiforov V.G., Ryabzeva E.A., Chertkoeva K.M. Analysis of nutritional support in neonates with congenital heart disease born in perinatal centre. Neonatologiya: novosti, mneniya, obuchenie [Neonatology: News, Opinions, Training]. 2018; 6 (4): 24–33. DOI: https://doi.org/10.24411/2308-2402-2018-14003 (in Russian)

13. Mukhina Yu.G., Chubarova A.I., Smirnov A.N. Provisional protocol of nutritional support of the newborns with surgical bowel diseases. Voprosy prakticheskoy pediatrii [Problems of Practical Pediatrics]. 2007; 2 (3): 33–45. (in Russian)

14. Tsoy E.G., Tsigel’nikova L.V., Igisheva L.N., Zhuravleva I.A. Nutritional provision of infants with congenital heart disease. Mat’ i ditya v Kuzbasse [Mother and Child in Kuzbass]. 2016; 66 (3): 19–25. (in Russian)

15. Chubarova A.I., Biryukova S.R. Insulin-like growth factor-1 in the assessment of the current nutritional status in infants with congenital heart disease. Rossiyskiy vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2014; (2): 83–8. (in Russian)

16. Sadykova D.I., Khabibrakhmanova Z.R., Shakirova A.R., Safina L.Z. The features of nutritional status in children with congenital heart disease. Rossiyskiy vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2019; 64 (5): 1948. (inRussian)

17. National program of the infants feeding optimization in the Russian Federation. Moscow: Soyuzpediatrov Rossii, 2019: 206 p. (in Russian)

18. Lim C., Lim J., Moorakonda R., et al. The impact of pre-operative nutritional status on outcomes following congenital heart surgery. Front Pediatr. 2019; 7: 429. DOI: https://doi.org/10.3389/fped.2019.00429

19. Wakita M., Fukatsu A., Amagai T. Nutrition assessment as a predictor of clinical outcomes for infants with cardiac surgery: using the prognostic nutritional index. Nutr Clin Pract. 2011; 26 (2): 192–8. DOI: https://doi.org/10.1177/0884533611399922

20. Mitchell I.M., Davies P.S., Day J.M., et al. Energy expenditure in children with congenital heart disease, before and after cardiac surgery. J Thorac Cardiovasc Surg. 1994; 107 (2): 374–80.

21. Schwalbe-Terilli С.R., Hartman D.H., Nagle M.L., et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care. 2009; 18 (1): 52–7. DOI: https://doi.org/10.4037/ajcc2009405

22. Zhang J., Cui Y.-Q., Ma Z.-M., et al. Energy and protein requirements in children undergoing cardiopulmonary bypass surgery: current problems and future direction. JPEN J Parenter Enteral Nutr. 2019; 43 (1): 52–64. DOI: https://doi.org/10.1002/jpen.1314

23. Karpen H.E. Nutrition in the cardiac newborns. Clin Perinatol. 2016; 43 (1): 131–45. DOI: https://doi.org/10.1016/j.clp.2015.11.009

24. Kaufman J., Vichayavilas P., Rannie M., et al. Improved nutrition delivery and nutrition status in critically ill children with heart disease. Pediatrics. 2015; 135 (3): 717–25. DOI: https://doi.org/10.1542/peds.2014-1835

25. McElhinney D., Hedrick H., Bush D., et al. Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics. 2000; 106 (5): 1080–7. DOI: https://doi.org/10.1542/peds.106.5.1080

26. Siano E., Lauriti G., Ceccanti S., Zani A. Cardiogenic necrotizing enterocolitis: a clinically distinct entity from classical necrotizing enterocolitis. Eur J Pediatr Surg. 2018; 29 (1): 14–22. DOI: https://doi.org/10.1055/s0038-1668144

27. Mou S.S., Haudek S.B., Lequier L., et al. Myocardial inflammatory activation in children with congenital heart disease. Crit Care Med. 2012; 30 (4): 827–32. DOI: https://doi.org/10.1097/00003246-200204000-00018

28. Lequier L.L., Nikaidoh H., Leonard S.R., et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest. 2000; 117 (6): 1706–12. DOI: https://doi.org/10.1378/chest.117.6.1706

29. Diez S., Tielesch L., Weiss C., et al. Clinical сharacteristics of necrotizing enterocolitis in preterm patients with and without persistent ductus arteriosus and in patients with congenital heart disease. Front Pediatr. 2020; 8: 257. DOI: https://doi.org/10.3389/fped.2020.00257

30. Cozzi C., Aldrink J., Nicol K., et al. Intestinal location of necrotizing enterocolitis among infants with congenital heart disease. J Perinatol. 2013; 33 (10): 783–5. DOI: https://doi.org/10.1038/jp.2013.49

31. Bubberman J.M., van Zoonen A., Bruggink J.L.M., et al. Necrotizing enterocolitis associated with congenital heart disease: a different entity? J Pediatr Surg. 2018; 54 (9): 1755–60. DOI: https://doi.org/10.1016/j.jpedsurg.2018.11.012

32. Becker K., Hornik C., Cotton M., et al. Necrotizing enterocolitis in infants with ductal-dependent congenital heart disease. Am J Perinatol. 2015; 32 (7): 633–8. DOI: https://doi.org/10.1055/s-0034-1390349

33. Nordenström K., Lannering K., Mellander M., Elfvin A. Low risk of necrotising enterocolitis in enterally fed neonates with critical heart disease: an observational study. Arch Dis Child Fetal Neonatal Ed. 2020; March 13: F1–6. DOI: https://doi.org/10.1136/fetalneonatal-2019-318537.

34. Scahill C.J., Graham E.M., Atz A.M., et al. Preoperative feeding neonates with cardiac disease: is the necrotizing enterocolitis fear justified? World J Pediatr Congenit Heart Surg. 2017; 8 (1): 62–8. DOI: https://doi.org/10.1177/2150135116668833

35. Carpenito K.-R., Prusinski R., Kirchner K., et al. Results of a feeding protocol in patients undergoing the hybrid procedure. Pediatr Cardiol. 2016; 37 (5): 852–9. DOI: https://doi.org/10.1007/s00246-016-1359-x

36. Kocjancic L., Bührer C., Berger F., Boos V. Effect of a dual-strain probiotic on necrotizing enterocolitis in neonates with ductal-dependent congenital heart disease: a retrospective cohort study. Neonatology. 2020; Aug 11: 1–8. DOI: https://doi.org/10.1159/000508831

37. Davis D., Davis S., Cotman K., et al. Feeding difficulties and growth delay in children with hypoplastic left heart syndrome versus d-transposition of the great arteries. Pediatr Cardiol. 2008; 29: 328–33. DOI: https://doi.org/10.1007/s00246-007-9027-9

38. Tume L.N., Balmaks R., da Cruz E., et al. Enteral feeding practices in infants with congenital heart disease across european PICUs. Pediatr Crit Care Med. 2018; 19 (2): 137–44. DOI: https://doi.org/10.1097/PCC.0000000000001412

39. Kataria-Hale J., Osborne S.W., Hair A., et al. Preoperative feeds in ductal-dependent cardiac disease. A systematic review and meta-analysis. Hosp Pediatr. 2019; 9 (12): 998–1006. DOI: https://doi.org/10.1542/hpeds.2019-0111

40. Toms R., Jackson K.W., Dabal R.J., et al. Preoperative trophic feeds in neonates with hypoplastic left heart syndrome. Congenit Heart Dis. 2015; 10 (1): 36–42. DOI: https://doi.org/10.1111/chd.12177

41. Ravishankar C., Zak V., Williams I.A., Bellinger D.C., Gaynor J.W., Ghanayem N.S., et al. Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: a report from the pediatric heart network infant single ventricle trial. J Pediatr. 2013; 62 (2): 250–6. DOI: https://doi.org/10.1016/j.jpeds.2012.07.048

42. Berseth C.L. Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr. 1992; 120 (6): 947–53. DOI: https://doi.org/10.1016/s0022-3476(05)81969-9

43. Cognata A., Kataria-Hale J., Griffiths P., et al. Human milk use in the preoperative period is associated with a lower risk for necrotizing enterocolitis in neonates with complex congenital heart disease. J Pediatr. 2019; 215: 11–6.e2. DOI: https://doi.org/10.1016/j.jpeds.2019.08.009

44. Furlong-Dillard J., Neary A., Marietta J., et al. Evaluating the impact of a feeding protocol in neonates before and after biventricular cardiac surgery. Pediatr Qual Saf. 2018; 3 (3): e080. DOI: https://doi.org/10.1097/pq9.0000000000000080

45. Booker P.D., Prosser D.P., Franks R. Effect of hypothermia on rectal mucosal perfusion in infants undergoing cardiopulmonary bypass. Br J Anaesth. 1996; 77: 591–6. DOI: https://doi.org/10.1093/bja/77.5.591

46. Schumacher K., Korr S., Vazquez-Jimenez J.F., et al. Does cardiac surgery in newborn infants compromise blood cell reactivity to endotoxin? Crit Care. 2005; 9 (5): 549–55. DOI: https://doi.org/10.1186/cc3794

47. Malagon I., Onkenhout W., Klok M., et al. Gut permeability in neonates after a stage 1 Norwood procedure. Pediatr Crit Care Med. 2005b; 6 (5): 547–9. DOI: https://doi.org/10.1097/01.pcc.0000175990.72753.97

48. Watson J.D, Urban T.T, Tong S.S., et al. Immediate post-operative enterocyte injury, as determined by increased circulating intestinal fatty acid binding protein, is associated with subsequent development of necrotizing enterocolitis after infant cardiothoracic surgery. Front Pediatr. 2020; 8: 267. DOI: https://doi.org/10.3389/fped.2020.00267

49. Ferguson L.P., Gandiya T., Kaselas C., et al. Gastrointestinal complications associated with the surgical treatment of heart disease in children. J Pediatr Surg. 2017; 52 (3): 414–9. DOI: https://doi.org/10.1016/j.jpedsurg.2016.10.052

50. Adkin D.V., Barinshteyn D.B., Nefedova I.E., Baryshnikova I.Yu., Berishvili D.O. Necrotizing enterocolitis in neonates with congenital heart disease after cardiac surgery. Detskie bolezni serdtsa i sosudov [Children’s Heart Troubles and Vessels]. 2016; 13 (4): 208–15. (in Russian)

51. Panchal A.K., Manzi J., Connolly S., et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enteral Nutr. 2016; 40 (2): 236–41. DOI: https://doi.org/10.1177/0148607114546533

52. Yoshimura S., Miwyazu M., Yoshizawa S., et al. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth Intensive Care. 2015; 43 (5): 587–93. DOI: https://doi.org/10.1177/0310057X1504300506

53. Mehta N.M., Bechard L.J., Cahill N., et al. Nutritional practices and their relationship to clinical outcomes in critically ill children – an international multicenter cohort study. Crit Care Med. 2012; 40 (7): 2204–11. DOI: https://doi.org/10.1097/CCM.0b013e31824e18a8

54. Kalra R., Vohra R., Negi M., et al. Feasibility of initiating early enteral nutrition after congenital heart surgery in neonates and infants. Clin Nutr ESPEN. 2018; 25: 100–2. DOI: https://doi.org/10.1016/j.clnesp.2018.03.127

55. Del Castillo S.L., McCulley M.E., Khemani R.G., Jeffries H.E., Thomas D.W., Peregrine J., et al. Reducing the incidence of necrotizing enterocolitis in neonates with hypoplastic left heart syndrome with the introduction of an enteral feed protocol. Pediatr Crit Care Med. 2010; 11 (3): 373–7. DOI: https://doi.org/10.1097/PCC.0b013e3181c01475

56. Cui Y., Li L., Hu C. Effects and tolerance of protein and energy-enriched formula in infants following congenital heart surgery: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2018. Vol. 42, N 1. P. 196–204. DOI: https://doi.org/10.1002/jpen.1031

57. Scheeffer V.A., Ricachinevsky C.P., Freitas A.T., et al. Tolerability and effects of the use of energy-enriched infant formula after congenital heart surgery: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2019; 44 (2): 348–54. DOI: https://doi.org/10.1002/jpen.1530

58. Pillo-Blocka F., Adatia I., Sharieff W., et al. Rapid advancement to more concentrated formula in infants after surgery for congenital heart disease reduces duration of hospital stay: a randomized clinical trial. J Pediatr. 2004; 145 (6): 761–6. DOI: https://doi.org/10.1016/j.jpeds.2004.07.043

59. Sahu M.K, Singal A., Menon R., et al. Early enteral nutrition therapy in congenital cardiac repair postoperatively: a randomized, controlled pilot study. Ann Card Anaesth. 2016; 19 (4): 653–61. DOI: https://doi.org/10.4103/0971-9784.191550

60. ElHassan N. O., Tang X., Gossett J., et al. Necrotizing enterocolitis in infants with hypoplastic left heart syndrome following stage 1 palliation or heart transplant. Pediatr Cardiol. 2018; 39: 774–85. DOI: https://doi.org/10.1007/s00246-018-1820-0

61. Jeffries H.E., Wells W.J., Starnes V.A., et al. Gastrointestinal morbidity after Norwood palliation for hypoplastic left heart syndrome. Ann Thorac Surg. 2006; 81 (3): 982–7. DOI: https://doi.org/10.1016/j.athoracsur.2005.09.001

62. Harrison M.A., Davis S., Reid J.R., et al. Neonates with hypoplastic left heart syndrome have ultrasound evidence of abnormal superior mesenteric artery perfusion before and after modified Norwood procedure. Pediatr Crit Care Med. 2005; 6 (4): 445–7. DOI: https://doi.org/10.1097/01.PCC.0000163674.53466.CA

63. Skinner M.L, Halstead L.A., Rubinstein C.S., et al. Laryngopharyngeal dysfunction after the Norwood procedure. J Thorac Cardiovasc Surg. 2005; 130 (5): 1293–301. DOI: https://doi.org/10.1016/j.jtcvs.2005.07.013

64. Luce W.A, Schwartz R.M, Beauseau W., et al. Necrotizing enterocolitis in neonates undergoing the hybrid approach to complex congenital heart disease. Pediatr Crit Care Med. 2011; 12 (1): 46–51. DOI: https://doi.org/10.1097/PCC.0b013e3181e3250c

65. Davies R.R., Carver S.W., Schmidt R., et al. Gastrointestinal complications after Stage I Norwood versus hybrid procedures. Ann Thorac Surg. 2013; 95 (1): 189–96. DOI: https://doi.org/10.1016/j.athoracsur.2012.05.130

66. Weiss S.L., Gossett J.G., Kaushal S., et al. Comparison of gastrointestinal morbidity after Norwood and hybrid palliation for complex heart defects. Pediatr Cardiol. 2011; 32 (4): 391–8. DOI: https://doi.org/10.1007/s00246-010-9864-9

67. Averin K., Uzark K., Beekman R.H., et al. Postoperative assessment of laryngopharyngeal dysfunction in neonates after Norwood operation. Ann Thorac Surg. 2012; 94 (4): 1257–61. DOI: https://doi.org/10.1016/j.athoracsur.2012.01.009

68. Malkar M.B., Jadcherla S. Neuro-motor mechanisms of pharyngo-esophageal motility in dysphagic infants with congenital heart disease. Pediatr Res. 2014; 76 (2.): 190–6. DOI: https://doi.org/10.1038/pr.2014.68

SCImago Journal & Country Rank
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)
Medicine today

Приглашаем принять участие в образовательных мероприятиях по оториноларингологии! В 2021 году стартует образовательный цикл, состоящий из четырех научно-практических мероприятий для оториноларингологов и врачей смежных специальностей. Первые два события планируется провести...

I Всероссийский форум "Актуальные вопросы медицинского права" 18-19 февраля 2021 года в режиме онлайн состоится Первый Всероссийский форум "Актуальные вопросы медицинского права". Мероприятие будет посвящено современным особенностям правового регулирования самых насущных...

I Всероссийский Конгресс с международным участием по фундаментальным проблемам лабораторной диагностики "Академия лабораторной медицины: новейшие достижения" 25-27 мая 2021 года в МВЦ "Крокус Экспо" состоится значимое событие в мире лабораторных исследований - I...


Journals of «GEOTAR-Media»