To the content
5 . 2020

The identification of the primal wine production with the protected designation of origin with the appliance of cluster metrics

Abstract

The article considers the guidelines of the choice of identification criteria, allowing to verify and confirm the geographical name of the origin of domestic primal wine production, thereby confirming their legal status. A priori the production of wine with protected designation of origin includes the use of certain raw materials with predetermined organoleptic and physical-chemical characteristics, which can be confirmed by respective tests.

The aim of the work was to develop a robust differentiating criterion that allows one to determine the authenticity and origin of wine materials relative to the standard.

Material and methods. The authors presented a clustering technique, which allows on the basis of test results and developed digital identification criteria to verify the origin of wine materials from Krasnodar and Rostov-on-Don regions. As a criterion, the data from the analysis of mineral and trace element composition of primal wine production in these regions have been used.

Results. The article postulates following: the main concern of clustering, methods of identification from the perspective of food production using food regression model, information on fundamental clustering metrics, fields of appliance according to the approach of the identification of the product with indication of geographic place of origin. Based on the results of the analysis of the content of 21 mineral substances (10 in μg/l and 11 in mg/l), a regressive model of the primal wine production was built. Based on this model, cluster centers were identified. The resultant model allows us to distinguish the two mentioned wine regions and form a spatial digital discrimination criterion based on the proximity to one of the established cluster centers.

Conclusion. The proposed model can be adapted to identify the production of different branches of the food industry.

Keywords:food product with geographical indication, identification, digital identification criterion, clustering, Voronoi diagram, regression model

Funding. The work was carried out within the framework of the state assignment of All-Russian Scientific Research Institute of Brewing, Non-Alcoholic and Wine Industry – Branch of the V.M. Gorbatov Federal Research Center for Food Systems of RAS.

Conflict of interest. The authors declare that they have no conflicts of interest.

For citation: Semipyatniy V.K., Khurshudyan S.A., Galstyan A.G. The identification of the primal wine production with the protected designation of origin with the appliance of cluster metrics. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (5): 119–26. DOI: https://www.doi.org/10.24411/0042-8833-2020-10072 (in Russian)

References

1. Khurshudyan S.A., Galstyan A.G. Food quality. Terms, definitions and contradictions. Kontrol’ kachestva produktsii [Product Quality Control]. 2018; (1): 48–9. (in Russian)

2. Khurshudyan S.A., Zaychik C.R. The History of Food Production and the Development of the Food Industry in Russia. Moscow: DeLi print, 2009: 286 p. (in Russian)

3. Gupta R.K., Dudeja P., Minhas S. Food Safety in the 21st Century: Public Health Perspective. Academic Press, 2016. ISBN 978-0-12-801773-9. DOI: https://doi.org/10.1016/C2014-0-01094-5

4. Tutelyan V.A., Vyalkov A.I., Razumov A.N., Mihaylov V.I., Moskalenko K.A., Odinets A.G., et al. Scientific Foundations of a Healthy Diet. Moscow: Panorama, 2010: 816 p. (in Russian)

5. Khurshudyan S.A., Ryabova A.E., Vafin R.R., Semipyatniy V.K., Mihailova I.Yu. Dairy product quality monitoring. Molochnaya promyshlennost’ [Dairy Industry]. 2018; (11): 23–4. (in Russian)

6. Semipyatniy V.K., Ryabova A.E., Egorova O.S., Vafin R.R. Optimization of experimental modeling of new beverage recipes using mathematical statistics methods. Pivo i napitki [Beer and Beverages]. 2018; (3): 48–51. (in Russian)

7. Petrov A.N., Galstyan A.G., Radaeva I.A., Turovskaya S.N., Illarionova E.E., Semipyatniy V.K., et al. Indicators of canned milk quality: Russian and international priorities. Foods Raw Mater. 2017; 5 (2): 151–61.

8. Erl M., Erl R. Examples of Food Development. Case Analysis. Saint Petersburg: Professia, 2010: 384 p. ISBN 978-1-84569-260-5. (in Russian)

9. Oganesyants L.A., Khurshudyan S.A., Galstyan A.G., Semipyatny V.K., Ryabova A.E., Vafin R.R., et al. Base matrices – invariant digital identifiers of food products. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2018; 6 (432): 6–15. DOI: https://doi.org/10.32014/2018.2518-170X.30

10. Hilbe J.M. Logistic Regression Models. Chapman and Hall/CRC Press, 2009. ISBN 9781138106710.

11. Hardle W., Simar L. Applied Multivariate Statistical Analysis. Berlin, Heidelberg: Springer, 2007. ISBN: 978-3642172281.

12. Rimareva L.V., Sokolova E.N., Serba E.M., Borshchevà Y.A., Kurbatova E.I., Krivova A.Y. Reduced allergenicity of foods of plant nature by method of enzymatic hydrolysis. Orient J Chem. 2017; 33 (4): 2009–15. DOI: https://doi.org/10.13005/ojc/330448

13. Pfitzner D., Leibbrandt R., Powers D. Characterization and evaluation of similarity measures for pairs of clusterings. Knowl Inf Syst. 2009; 19: 361–94. DOI: https://doi.org/10.1007/s10115-008-0150-6

14. Perriere G., Thioulouse J. Use of correspondence discriminant analysis to predict the subcellular location of bacterial proteins. Comput Methods Programs Biomed. 2003; 70 (2): 99–105. DOI: https://doi.org/10.1016/s0169-2607(02)00011-1

15. Ortea I., Gallardo J.M. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: an exploratory analysis. Food Chem. 2015; 170 (1): 145–53.

16. Kawaguchi F., Kitamura Y., Nakajima R., Takahashi M., Goto H., Washida Y., et al. Application of DNA markers for discrimination between Japanese and Australian Wagyu beef. Anim Sci J. 2018; 89 (1): 2578.

17. Tochilina R.P., Goncharova S.A., Khorosheva E.V., Semipyatniy V.K. Features of the mineral composition of Don wines and wine materials as an identification indicator of the place of origin. Vinodelie i vinogradarstvo [Wine and Viticulture]. 2016; (3): 147. (in Russian)

18. Donnik I.M., Vafin R.R., Galstyan A.G., et al. Genetic identification of bovine leukaemia virus. Foods Raw Mater.2018; 6 (2): 314–24. DOI: DOI: http://doi.org/10.21603/2308-4057-2018-2-314-324

19. Brzezicha-Cirocka J., Grembecka M., Szefer P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ Monit Assess. 2016; 188 (3): 1–11.

20. Oganesyants L.A., Panasyuk A.L., Kuzmina E.I., et al. Definition of authenticity of grape wines by means of isotropic mass spectrometry. Food Proccessing Ind. 2011; 9: 30–1.

21. Conde J.E. Charactererization of bottled wines from the Tenerife island (Spain) by their metal ion concentration. Ital G Food Sci. 2002; 14 (4): 375–87.

22. Perez Trujillo J.P. Content of mineral ions in wines from Canary Islands (Spain). CyTA J Food. 2011; 9 (2): 135–40.

23. Martin G.J., Mazure M., Jouitteau C., et al. Characterization of the geographic origin of Bourdeaux wines by a combined use of isotopic and trace element measurements. Am J Enol Vitic. 1999; 50: 409–17.

24. Marcos J.J., Alcazar A., Palacios-Morillo A., Pablos F. Classification of Spanish wines white DO according to their elemental composition using methods support vector machine. Food Chem. 2012; 135 (3): 898–903.

25. Dutra S.V., Adami L., Marson A.R. A definição da origem geográfica de vinhos brasileiros de análise de isotópica e mineral composição. Anal Bioanal Chem. 2011; 401 (5): 1575–80.

SCImago Journal & Country Rank
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)
Medicine today

Приглашаем принять участие в образовательных мероприятиях по оториноларингологии! В 2021 году стартует образовательный цикл, состоящий из четырех научно-практических мероприятий для оториноларингологов и врачей смежных специальностей. Первые два события планируется провести...

I Всероссийский форум "Актуальные вопросы медицинского права" 18-19 февраля 2021 года в режиме онлайн состоится Первый Всероссийский форум "Актуальные вопросы медицинского права". Мероприятие будет посвящено современным особенностям правового регулирования самых насущных...

I Всероссийский Конгресс с международным участием по фундаментальным проблемам лабораторной диагностики "Академия лабораторной медицины: новейшие достижения" 25-27 мая 2021 года в МВЦ "Крокус Экспо" состоится значимое событие в мире лабораторных исследований - I...


Journals of «GEOTAR-Media»