To the content
6 . 2020

Justification of the need to normalize vitamin D status for immunoprophylaxis

AbstractCurrently, there is an increase in the resistance of microorganisms to the available arsenal of antimicrobial drugs, which makes it necessary to maintain and stimulate the body’s own immune-protective properties. The main extraskeletal effect of vitamin D activity is associated with the homeostasis of the immune system. The role of vitamin D in reducing the risk of infection with infectious agents has been studied for a long time. Literature search on the effective use of vitamin D for immunoprophylaxis was carried out in Scopus, Web of Science, PubMed, clinicaltrials.gov databases over the past 10 years for related keywords: vitamin D, immunoprophylaxis. Vitamin D stimulates the synthesis of antimicrobial peptides, cathelicidins and defensins, which exhibit broad-spectrum activity against viruses, bacteria and fungal infections; reduces the concentration of pro-inflammatory cytokines; increases the concentration of anti-inflammatory cytokines. Vitamin D is also involved in cell differentiation, maturation and proliferation of immune cells. The article presents the literature review in order to justify additional intake of vitamin D in case of diagnosis of its deficiency and insufficiency for the purpose of immunoprophylaxis in children and adults, especially in risk groups (elderly age, pregnant women, patients with chronic diseases of respiratory, endocrine and urinary systems, gastrointestinal tract, and infectious diseases). Inclusion of vitamin D in the diet as a dietary supplement, as well as fortification of products with it, can be an effective measure to reduce the risk of both morbidity and mortality, especially during the period of quarantine measures.

Keywords:vitamin D, immunoprophylaxis, D hypovitaminosis

Funding. The study did not have sponsorship.

Conflict of interest. Authors declare no conflict of interest.

For citation: Tulegenova D.E., Ibrayeva L.K., Rybalkina D.Kh., Minbayeva L.S., Bacheva I.V. Justification of the need to normalize vitamin D status for immunoprophylaxis. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (6): 70-81. DOI: 10.24411/0042-8833-2020-10080 (in Russian)

References

1. Snopov S.A. Mechanisms of vitamin D action on the immune system. Meditsinskaya immunologiya [Medical Immunology]. 2014; 16 (6): 499–530. (in Russian)

2. Barragan M., Good M., Kolls J.K. Regulation of dendritic cell function by vitamin D. Nutrients. 2015; 7 (9): 8127–51. DOI: https://doi.org/10.3390/nu7095383

3. Chung C., Silwal P., Kim I., Modlin R.L., Jo E.K. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020; 20 (2): e12. DOI: https://doi.org/10.4110/in.2020.20.e12

4. Febriza1 A., Hatta M., Natzir R., Kasim V.N.A., Idrus H.H. Activity of antimicrobial peptide; cathelicidin, on bacterial infection. Open Biochem J. 2019; 13: 45–53. DOI: https://doi.org/10.2174/1874091X01913010045

5. Zakharova I.N., Klimov L.Y., Kasya’nova A.N., Yagupova A.V., Kur’yaninova V.A., Dolbnya S.V., et al. The role of antimicrobial peptides and vitamin D anti-infection protection formation. Pediatriya. Zhurnal im. G.N. Speranskogo [Pediatrics Journal named after G.N. Speransky]. 2017; 96 (4): 171–9. DOI: https://doi.org/10.24110/0031-403X-2017-96-4-171-179 (in Russian)

6. Tulegenova D.E., Minbayeva L.S., Nursultanova S.D., Satzhanova GB, Turkhanova Zh.Zh., Akhmetova M.K., et al. Assessment of vitamin D levels in the population of central Kazakhstan according to the clinical diagnostic laboratory OLIMP. Mezhdunarodniy zhurnal sedtsa i sosudistykh zabolevaniy [International Journal of Heart and Vascular Diseases]. 2020; 8 (25): 229–30. (in Russian)

7. Ritterhouse L.L., Lu R., Shah H.B., et al. Vitamin D deficiency in a multiethnic healthy control cohort and altered immune response in vitamin D deficient European-American healthy controls. PLoS One. 2014; 9 (4): e94500. DOI: https://doi.org/10.1371/journal.pone.0094500

8. Giustina A., Adler R.A., Binkley N., et al. Controversies in vitamin D: summary statement from an international conference. J Clin Endocrinol Metab. 2019; 104 (2): 234–40. DOI: https://doi.org/10.1210/jc.2018-01414

9. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020; 12 (4): 988. DOI: https://doi.org/10.3390/nu12040988

10. Fantacone M.L., Lowry M.B., Uesugi S.L., et al. The effect of a multivitamin and mineral supplement on immune function in healthy older adults: a double-blind, randomized, controlled trial. Nutrients. 2020; 12 (8): E2447. DOI: https://doi.org/10.3390/nu12082447

11. Entrenas Castillo M., Entrenas Costa L.M., Vaquero Barrios J.M., et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol. Biol. 2020; 203: E105751. DOI: https://doi.org/10.1016/j.jsbmb.2020.105751

12. URL: https://clinicaltrials.gov/ct2/show/NCT01244204?term=vitamin+D%2C+immunity%2C+prevention&draw=2&rank=1 (clinical study by Harvard School of Public Health «Role of Vitamin D in Innate Immunity to Tuberculosis») (date of access July 22, 2020)

13. Yegorov S., Bromage S., Boldbaatar N., Ganmaa D. Effects of vitamin D Supplementation and seasonality on circulating cytokines in adolescents: analysis of data from a feasibility trial in Mongolia. Front Nutr. 2019; 6: 166. DOI: https://doi.org/10.3389/fnut.2019.00166

14. Gromova О.А., Torshin I.Yu., Zakharova I.N., Malyavskaya S.I. Role of vitamin D in regulation of immunity, prevention and therapy of infectious pediatric diseases. Meditsinskiy sovet [Medical Council]. 2017; (19): 52–60. DOI: https://doi.org/10.21518/2079-701X-2017-19-52-60

15. URL: https://clinicaltrials.gov/ct2/show/NCT03132103?term=vitamin+D%2C+immunity%2C+prevention&draw=2&rank=3 (Bangor University clinical trial «Vitamin D Supplementation and Immunity/Physical Performance») (date of access July 22, 2020)

16. Kashi D.S., Oliver S.J., Wentz L.M., et al. Vitamin D and the hepatitis B vaccine response: a prospective cohort study and a randomized, placebo-controlled oral vitamin D3 and simulated sunlight supplementation trial in healthy adults. Eur J Nutr. 2020; May 10: 10.1007/s00394-020-02261-w. DOI: https://doi.org/10.1007/s00394-020-02261-w

17. URL: https://clinicaltrials.gov/ct2/show/NCT01426256?term=vitamin+D%2C+immunity&draw=3&rank=15 [Bangor University clinical trial «Vitamin D for Enhancing the Immune System in Cystic Fibrosis (DISC Study) (DISC)»] (date of access July 22, 2020)

18. Tangpricha V., Lukemire J., Chen Y., et al. Vitamin D for the Immune System in Cystic Fibrosis (DISC): a double-blind, multicenter, randomized, placebo-controlled clinical trial. Am J Clin Nutr. 2019; 109 (3): 544–53. DOI: https://doi.org/10.1093/ajcn/nqy291

19. URL: https://clinicaltrials.gov/ct2/show/NCT01175798?term=vitamin+D%2C+immunity&rslt=With&draw=2&rank=1 (Icahn school of Medicine Clinical Trial «Impact of Vitamin D Repletion in Hemodialysis Patients») (date of access July 22, 2020)

20. Li L., Lin M., Krassilnikova M., et al. Effect of cholecalciferol supplementation on inflammation and cellular alloimmunity in hemodialysis patients: data from a randomized controlled pilot trial. PLoS One. 2014; 9 (10): e109998. DOI: https://doi.org/10.1371/journal.pone.0109998

21. Hong S., Ferraro C.S., Hamilton B.K., Majhail N.S. To D or not to D: vitamin D in hematopoietic cell transplantation. Bone Marrow Transplant. 2020; 55: 2060–70. DOI: https://doi.org/10.1038/s41409-020-0904-7

22. URL: https://clinicaltrials.gov/ct2/show/NCT01229891?term=vitamin+D%2C+immunity&rslt=With&draw=2&rank=2 (clinical study of the National Institute of Nutrition and Food Technology of Tehran «Comparison of Efficacy of Vitamin D and Vitamin D-calcium Fortified Yogurt Drink in Diabetic Patients») (date of access July 22, 2020)

23. Neyestani T.R., Nikooyeh B., Alavi-Majd H., et al. Improvement of vitamin D status via daily intake of fortified yogurt drink either with or without extra calcium ameliorates systemic inflammatory biomarkers, including adipokines, in the subjects with type 2 diabetes. J Clin Endocrinol Metab. 2012; 97 (6): 2005–11. DOI: https://doi.org/10.1210/jc.2011-3465

24. Infante M., Ricordi C., Sanchez J., et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes. Nutrients. 2019; 11 (9): 2185. DOI: https://doi.org/10.3390/nu11092185

25. URL: https://clinicaltrials.gov/ct2/show/NCT01967628?term=vitamin+D%2C+immunity&rslt=With&draw=2&rank=4 (University of Iowa clinical trial «Human Lung Responses to Respiratory Pathogens») (date of access July 22, 2020)

26. Vargas Buonfiglio L.G., Cano M., Pezzulo A.A., et al. Effect of vitamin D3 on the antimicrobial activity of human airway surface liquid: preliminary results of a randomised placebo-controlled double-blind trial. BMJ Open Respir Res. 2017; 4 (1): e000211. DOI: https://doi.org/10.1136/bmjresp-2017-000211

27. Gerke A.K., Pezzulo A.A., Tang F., et al. Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial. Multidiscip Respir Med. 2014; 9 (1): 18. DOI: https://doi.org/10.1186/2049-6958-9-18

28. Telcian A.G., Zdrenghea M.T., Edwards M.R., et al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017; 137: 93–101. DOI: https://doi.org/10.1016/j.antiviral.2016.11.004

29. Greiller C.L., Suri R., Jolliffe DA., et al. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. J Steroid Biochem Mol Biol. 2019; 187: 152–9. DOI: https://doi.org/10.1016/j.jsbmb.2018.11.013

30. Mishra N.K., Mishra J.K., Srivastava G.N., et al. Should vitamin D be routinely checked for all chronic obstructive pulmonary disease patients? Lung India. 2019; 36 (6): 492–8. DOI: https://doi.org/10.4103/lungindia.lungindia_141_19

31. Zeng Y., Luo M., Pan L., et al. Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol. 2020; 318 (3): 542–53. DOI: https://doi.org/10.1152/ajpgi.00286.2019

32. Yamamoto E.A., Jorgensen T.N. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Front Immunol. 2020; 10: 3141. DOI: https://doi.org/10.3389/fimmu.2019.03141

33. Haifer C., Lawrance I.C., Center J.R., et al. Vitamin D metabolites are lower with active Crohn’s disease and spontaneously recover with development of remission. Ther Adv Gastroenterol. 2019; 12: e1756284819865144. DOI: https://doi.org/10.1177/1756284819865144

34. Triantos C., Kalafateli M., Aggeletopoulou I., et al. Vitamin D-related immunomodulation in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2020; 32 (7): 867–76. DOI: https://doi.org/10.1097/MEG.0000000000001597

35. Bellan M., Andreoli L., Mele C., et al. Pathophysiological role and therapeutic implications of vitamin D in autoimmunity: focus on chronic autoimmune diseases. Nutrients. 2020; 12 (3): 789. DOI: https://doi.org/10.3390/nu12030789

36. Cyprian F., Lefkou E., Varoudi K., Girardi G. Immunomodulatory effects of vitamin D in pregnancy and beyond. Front Immunol. 2019; 10: 2739. DOI: https://doi.org/10.3389/fimmu.2019.02739

37. Schröder-Heurich B., Springer C.J.P., von Versen-Höynck F. Vitamin D effects on the immune system from periconception through pregnancy. Nutrients. 2020; 12 (5): 1432. DOI: https://doi.org/10.3390/nu12051432

38. Chen X., Diao L., Lian R., et al. Potential impact of maternal vitamin D status on peripheral blood and endometrium cellular immunity in women with recurrent implantation failure. Am J Reprod Immunol. 2020; 84 (1): e13243. DOI: https://doi.org/10.1111/aji.13243

39. Smith M., O'Brien E.C., Alberdi G., et al. Association between vitamin D status in early pregnancy and atopy in offspring in a vitamin D deplete cohort. Ir J Med Sci. 2020; 189 (2): 563–70. DOI: https://doi.org/10.1007/s11845-019-02078-5

40. Shim J., Pérez A., Symanski E., Nyitray A.G. Association between serum 25-hydroxyvitamin D level and human papillomavirus cervicovaginal infection in women in the United States. J Infect Dis. 2016; 213 (12): 1886–92. DOI: https://doi.org/10.1093/infdis/jiw065

41. Öztekin A., Öztekin C. Vitamin D levels in patients with recurrent herpes labialis. Viral Immunol. 2019; 32 (6): 258–62. DOI: https://doi.org/10.1089/vim.2019.0013

42. Goncalves-Mendes N., Talvas J., Dualé C., et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front Immunol. 2019; 10: 65. DOI: https://doi.org/10.3389/fimmu.2019.00065

43. Lee M.D., Lin C.H., Lei W.T., et al. Does vitamin D deficiency affect the immunogenic responses to influenza vaccination? A systematic review and meta-analysis. Nutrients. 2018; 10 (4): 409. DOI: https://doi.org/10.3390/nu10040409

44. Swaminathan A., Harrison S.L., Ketheesan N., et al. Exposure to solar UVR Suppresses cell-mediated immunization responses in humans: the Australian ultraviolet radiation and immunity study. J Invest Dermatol. 2019; 139 (7): 1545–53.e6. DOI: https://doi.org/10.1016/j.jid.2018.12.025

45. Hart P.H., Norval M. Are there differences in immune responses following delivery of vaccines through acutely or chronically sun-exposed compared with sun-unexposed skin? Immunology. 2020; 159 (2): 133–41. DOI: https://doi.org/10.1111/imm.13128

46. Cela E.M., Gonzalez C.D., Friedrich A., et al. Daily very low UV dose exposure enhances adaptive immunity, compared with a single high-dose exposure. Consequences for the control of a skin infection. Immunology. 2018; 154 (3): 510–21. DOI: https://doi.org/10.1111/imm.12901

47. Jafarzadeh A., Keshavarz J., Bagheri-Jamebozorgi M., Nemati M., Frootan R., Shokri F. The association of the vitamin D status with the persistence of anti-HBs antibody at 20years after primary vaccination with recombinant hepatitis B vaccine in infancy. Clin Res Hepatol Gastroenterol. 2017; 41 (1): 66–74. DOI: https://doi.org/10.1016/j.clinre.2016.06.005

48. Murayama A., Saitoh H., Takeuchi A., et al. Vitamin D derivatives inhibit hepatitis C virus production through the suppression of apolipoprotein. Antiviral Res. 2018; 160: 55–63. doi:10.1016/j.antiviral.2018.10.014.

49. Mailhot G., White J.H. Vitamin D and immunity in infants and children. Nutrients. 2020; 12 (5): 1233. DOI: https://doi.org/10.3390/nu12051233

50. Walker V.P., Zhang X., Rastegar I., et al. Cord blood vitamin D status impacts innate immune responses. J Clin Endocrinol Metab. 2011; 96 (6): 1835–43. DOI: https://doi.org/10.1210/jc.2010-1559

51. Hong M., Xiong T., Huang J., et al. Association of vitamin D supplementation with respiratory tract infection in infants. Matern Child Nutr. 2020; 16 (3): e12987. DOI: https://doi.org/10.1111/mcn.12987

52. Hollams E.M., Teo S.M., Kusel M., et al. Vitamin D over the first decade and susceptibility to childhood allergy and asthma. J Allergy Clin Immunol. 2017; 139 (2): 472–81.e9. DOI: https://doi.org/10.1016/j.jaci.2016.07.032

53. Coutaz M. Prévention chez le senior : les facteurs clés [Prevention in older age : key factors]. Rev Med Suisse. 2018; 14 (626): 1998–2002.

54. Bearden A., Van Winden K., Frederick T., et al. Low maternal vitamin D is associated with increased risk of congenital and peri/postnatal transmission of cytomegalovirus in women with HIV. PLoS One. 2020; 15 (2): e0228900. DOI: https://doi.org/10.1371/journal.pone.0228900

55. Rieder F.J.J., Gröschel C., Kastner M.T., et al. Human cytomegalovirus infection downregulates vitamin-D receptor in mammalian cells. J Steroid Biochem Mol Biol. 2017; 165 (B): 356–62. DOI: https://doi.org/10.1016/j.jsbmb.2016.08.002

56. Bucak I.H., Ozturk A.B., Almis H., et al. Is there a relationship between low vitamin D and rotaviral diarrhea? Pediatr Int. 2016; 58 (4): 270–3. DOI: https://doi.org/10.1111/ped.12809

57. Pushkarev K.A., Kausova G.K., Berlizeva Y.A., Vassil’chenko N.V., Kairat G. Vitamin D deficiency as a performance decrement factor in adolescents. Meditsina (Almaty) [Medicine (Almaty)]. 2018; 2 (188): 34–8 (in Russian)

58. Chun R.F., Liu N.Q., Lee T., et al. Vitamin D supplementation and antibacterial immune responses in adolescents and young adults with HIV/AIDS. J Steroid Biochem Mol Biol. 2015; 148: 290–7. DOI: https://doi.org/10.1016/j.jsbmb.2014.07.013

59. Velarde López A.A., Gerber J.S., Leonard M.B., Xie D., Schinnar R., Strom B.L. Children with lower respiratory tract infections and serum 25-hydroxyvitamin D3 levels: a case-control study. Pediatr Pulmonol. 2016; 51 (10): 1080–7. DOI: https://doi.org/10.1002/ppul.23439

60. Alves A.S., Ishimura M.E., Duarte Y.A.O., Bueno V. Parameters of the immune system and vitamin D levels in old individuals. Front Immunol. 2018; 9: 1122. DOI: https://doi.org/10.3389/fimmu.2018.01122

61. Buttriss J.L., Lanham-New S.A. Is a vitamin D fortification strategy needed? Nutr Bull. 2020; 45 (2): 115–22. DOI: https://doi.org/10.1111/nbu.12430

62. Marshall B., Bennett N., Smith A., Oh R., Burket J. PURL: Can vitamin D prevent acute respiratory infections? J Fam Pract. 2019; 68 (4): 230–1. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597199/ (date of access July 22, 2020)

63. Al-Zohily B., Al-Menhali A., Gariballa S., Haq A., Shah I. Epimers of vitamin D: a review. Int J Mol Sci. 2020; 21 (2): 470. DOI: https://doi.org/10.3390/ijms21020470

64. Giustina A., Adler R.A., Binkley N., et al. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020; 21 (1): 89–116. DOI: https://doi.org/10.1007/s11154-019-09532-w

65. Moyersoen I., Devleesschauwer B., Dekkers A., et al. A Novel approach to optimize vitamin D intake in Belgium through fortification based on representative food consumption data. J Nutr. 2019; 149 (10): 1852–62. DOI: https://doi.org/10.1093/jn/nxz119

66. Jan Y., Malik M., Yaseen M., et al. Vitamin D fortification of foods in India: present and past scenario. J Steroid Biochem Mol Biol. 2019; 193: 105417. DOI: https://doi.org/10.1016/j.jsbmb.2019.105417

67. Cashman K.D., O’Dea R. Exploration of strategic food vehicles for vitamin D fortification in low/lower-middle income countries. J Steroid Biochem Mol. Biol. 2019; 195: 105479. DOI: https://doi.org/10.1016/j.jsbmb.2019.105479

68. Gronborg I.M., Tetens I., Ege M., Christensen T., Andersen E.W., Andersen R. Modelling of adequate and safe vitamin D intake in Danish women using different fortification and supplementation scenarios to inform fortification policies. Eur J Nutr. 2019; 58 (1): 227–32. DOI: https://doi.org/10.1007/s00394-017-1586-9

69. Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutelyan V.A. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Voprosy pitaniia [Problems of Nutrition]. 2017; 86 (4): 113–24. DOI: https://doi.org/10.24411/0042-8833-2017-00067 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»