To the content
1 . 2021

Influence of the L-carnitine and resveratrol complex on physiological, biochemical and morphological indicators of normal and obese rats

Abstract

Specialized products and dietary supplements, enriched with complexes of minor biologically active substances (BAS), are often offered as components of therapeutic diets in the treatment of obesity and metabolic syndrome. At the same time, the possible effects of the interactions of BAS when consuming a multicomponent product have not been studied enough.

The aim - to study the action on rats’ organism of a complex supplement (КС), containing resveratrol (Res) and L-carnitine (L-Car), when consumed with a standard balanced or hypercaloric diet.

Material and methods. Male Wistar rats received for 63 days a standard balanced diet (SD) or a high-fat-high-carbohydrate diet (HFCD) with an excess of total fat (30%) and fructose (20% solution instead of drinking water), or the same diets supplemented with КС in a low (25 mg/kg body weight as Res and 300 mg/kg body weight as L-Car) or high (50 and 600 mg/kg body weight, respectively) doses. The muscle grip strength, behavioral reactions in tests of the conditioned passive avoidance reflex (CPAR) and elevated plus maze (EPM) were studied. At the end of the experiment, the mass of adipose tissue and internal organs was determined together with the activity of microsomal and cytosolic liver enzymes for specific substrates, plasma biochemical parameters, liver morphology by light-optical microscopy, accumulation of lipofuscin-like granules (LLG) in the liver and kidneys by laser confocal microscopy.

Results. In the rats fed HFCD, compared with SD, there was an increase in the mass index of liver, total inguinal and retroperitoneal white adipose tissue, in the levels of glucose and triglycerides, in the activity of hepatic CYP1A1 and CYP3A monooxygenases, UDP-glucuronosyltransferase, heme oxygenase, and simultaneous decrease of high and low density lipoprotein cholesterol, and quinone oxidoreductase activity. The КС intake stimulated the locomotor activity of rats in EPM, however, this effect was less pronounced against the background of HFCD consumption. In rats consuming SD (but not HFCD), the addition of КС caused an increase in search activity and anxiety according to the EPM and CPAR data. The effect on short- and long-term memory retention was statistically insignificant. RС intake did not have hypolipidemic and hypoglycemic properties but caused in low dose an increase in the ratio of the activity of transaminases AST/ALT in animals fed HFCD. The liver CYP3A activity increased in rats supplemented with RС in high dose fed HFCD. In the kidneys of animals, the consumption of RС resulted in increased accumulation of LLG.

Conclusion. When studying the effect of the complex supplement RС on normal and obese rats according to the studied physiological, morphological and biochemical indexes, no positive effects were revealed, that would not have manifested themselves for Res and L-Car separate intake. No evidence of synergistic action of L-Car and Res were found, and some of the effects of the complex supplement can be considered as adverse. This requires careful assessment when combined using these substances in complex diet therapy of metabolic disorders in humans.

Keywords:obesity, high-calorie diet, rats, resveratrol, carnitine, joint administration, dietary supplements, specialized foods

Funding. This research was funded by Russian Science Foundation (grant № 17-16-01043).

Conflict of interests. The authors declare no conflict of interests.

Acknowledgements. The determination of blood biochemical parameters was performed by Jorge Selada Soto.

For citation: Shipelin V.A., Shumakova A.A., Semin M.O., Trusov N.V., Balakina A S., Timonin A.N., Gmoshinski I.V., Nikityuk D.B. Influence of the L-carnitine and resveratrol complex on physiological, biochemical and morphological indicators of normal and obese rats. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (1): 15-32. DOI: https://doi.org/10.33029/0042-8833-2021-90-1-15-32 (in Russian)

References

1. Poznyakovsky V.M., Sukhanov B.P. Food supplements in modern nutritional science. Tekhnika i tekhnologiya pishchevykh proizvodstv [Food Production Equipment and Technology]. 2009; 2 (13). [Electronic resource]. URL: http://fptt.ru/stories/archive/13/13.pdf (date of access September 20, 2020) (in Russian)

2. Tutel’yan V.A., Kiseleva T.L., Kochetkova A.A., Smirnova E.A., Kiseleva M.A., Sarkisyan V.A. Promising sources of phytonutrients for specialized foods with a modified carbohydrate profile: the experience of traditional medicine. Voprosy pitaniia [Problems of Nutrition]. 2016; 84 (4): 46–60. DOI: https://doi.org/10.24411/0042-8833-2016-00050 (in Russian)

3. Sun N.-N., Wu T.-Y., Chau C.-F. Natural dietary and herbal products in anti-obesity treatment. Molecules. 2016; 21 (10): 1351. DOI: https://doi.org/10.3390/molecules21101351

4. Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018; 6 (3): 91. DOI: https://doi.org/10.3390/biomedicines6030091

5. Miatello R., Vázquez M., Renna N., Cruzado M., Zumino A.P., Risler N. Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens. 2005; 18 (6): 864–70. DOI: https://doi.org/10.1016/j.amjhyper.2004.12.012

6. Mendes K.L., de Pinho L., Andrade J.M., Paraíso A.F., Lula J.F., Macedo S.M., et al. Distinct metabolic effects of resveratrol on lipogenesis markers in mice adipose tissue treated with high-polyunsaturated fat and high-protein diets. Life Sci. 2016; 153: 66–73. DOI: https://doi.org/10.1016/j.lfs.2016.04.014

7. Chan V., Fenning A., Iyer A., Hoey A., Brown L. Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats. Curr Pharm Biotechnol. 2011; 12 (3): 429–36. DOI: https://doi.org/10.2174/138920111794480552

8. Rivera L., Morón R., Zarzuelo A., Galisteo M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol. 2009; 77 (6): 1053–63. DOI: https://doi.org/10.1016/j.bcp.2008.11.027

9. Ma C., Wang Y., Dong L., Li M., Cai W. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochim Biophys Sin (Shanghai). 2015; 47 (3): 207–13. DOI: https://doi.org/10.1093/abbs/gmu135

10. Rauf A., Imran M., Suleria H.A.R., Ahmad B., Peters D.G., Mubarak M.S. A comprehensive review of the health perspectives of resveratrol. Food Funct. 2017; 8 (12): 4284–305. DOI: https://doi.org/10.1039/c7fo01300k

11. Longo N., Frigeni M., Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta Mol Cell Res. 2016; 1863 (10): 2422–35. DOI: https://doi.org/10.1016/j.bbamcr.2016.01.023

12. Pooyandjoo M., Nouhi M., Shab-Bidar S., Djafarian K., Olyaeemanesh A. The effect of L-carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2016; 17 (10): 970–6. DOI: https://doi.org/10.1111/obr.12436

13. Wu T., Guo A., Shu Q., Qi Y., Kong Y., Sun Z., et al. L-carnitine intake prevents irregular feeding-induced obesity and lipid metabolism disorder. Gene. 2015; 554 (2): 148–54. DOI: https://doi.org/10.1016/j.gene.2014.10.040

14. Oliveira C., Sousa M. Les effets d’un complément alimentaire en L-carnitine dans la performance sportive. Sci Sports. 2019; 34 (2): 63–72. DOI: https://doi.org/10.1016/j.scispo.2018.09.005

15. Radzhabkadiev R.M., Korosteleva M.M., Evstratova V.S., Nikityuk D.B., Khanfer’yan R.A. L-carnitine: properties and perspectives for use in sports practice. Voprosy pitaniia [Problems of Nutrition]. 2015; 84 (3): 4–12. DOI: https://doi.org/10.24411/0042-8833-2015-00017 (in Russian)

16. Brass E.P. Carnitine and sports medicine: use or abuse? Ann N Y Acad Sci. 2004; 1033 (1): 67–78. DOI: https://doi.org/10.1196/annals.1320.006

17. Biesinger S., Michaels H.A., Quadros A.S., Qian Y., Rabovsky A.B., Badger R.S., et al. A combination of isolated phytochemicals and botanical extracts lowers diastolic blood pressure in a randomized controlled trial of hypertensive subjects. Eur J Clin Nutr. 2016; 70 (1): 10–6. DOI: https://doi.org/10.1038/ejcn.2015.88

18. Apryatin S.A., Shipelin V.A., Trusov N.V., Mzhelskaya K.V., Evstratova V.S., Kirbaeva N.V., et al. Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats. Physiol Rep. 2019; 7 (4): e13987. DOI: https://doi.org/10.14814/phy2.13987

19. Apryatin S.A., Semin M.O., Gmoshinski I.V., Nikityuk D.B. High-carbohydrate diets affect accumulation of lipofuscin-like pigment in the kidneys of mice and rats: autofluorescence confocal microscopy analysis. Bull Exp Biol Med. 2019; 167 (5): 628–33. DOI: https://doi.org/10.1007/s10517-019-04585-y

20. Nakajima M., Nakamura S., Tokudome S., Shimada N., Yamazaki H., Yokoi T. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos. 1999; 27 (12): 1381–91.

21. Umegaki K., Saito K., Kubota Y. Sanada H, Yamada K, Shinozuka K. Ginkgo biloba extract markedly induces pentoxyresorufin O-dealkylase activity in rats. Jpn J Pharmacol. 2002; 90 (4): 345–1. DOI: https://doi.org/10.1254/jjp.90.345

22. Habig W.H., Pabst W.J., Jacoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249 (22): 7130–9.

23. Burchell B., Weatherill P. 4-Nitrophenol UDP glucuroniltransferase (rat liver). Methods Enzymol. 1981; 77: 169–76.

24. McNally S.J., Ross J.A., James Garden O., Wigmore S.J. Optimization of the paired enzyme assay for heme oxygenase activity. Anal Biochem. 2004; 332 (2): 398–400. DOI: https://doi.org/10.1016/j.ab.2004.06.024

25. Benson A.M., Hunkeler M.J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA. 1980; 77 (9): 5216–20.

26. Apryatin S.A., Mzhel’skaya K.V., Balakina A.S., Soto S.J., Beketova N.A., Kosheleva O.V., et al. Sex and line differences in biochemical indices and fat soluble vitamins sufficiency in rats on in vivo model of metabolic syndrome. Voprosy pitaniia [Problems of Nutrition]. 2018; 87 (1): 56–67. (in Russian)

27. Mzhel’skaya K.V., Trusov N.V., Soto H.S., Apryatin S.A., Gmoshinsky I.V., Tutel’yan V.A. Effect of quercetin on the expression of the carbohydrate and lipid metabolism genes in the liver of rats with genetic and alimentary obesity. Voprosy pitaniia [Problems of Nutrition] 2019; 88 (2): 6–16. DOI: https://doi.org/10.24411/0042-8833-2019-10012 (in Russian)

28. Kravchenko L.V., Aksenov I.V., Trusov N.V., Guseva G.V., Avrenyeva L.I. Effects of dietary fat level on the xenobiotic metabolism enzymes activity and antioxidant enzymes in rats. Voprosy pitaniia [Problems of Nutrition]. 2012; 81 (1): 24–9. (in Russian)

29. Aksenov I.V., Avren’eva L.I., Guseva G.V., Trusov N.V., Balakina A.S., Mzhel’skaya K.V., et al. Effects of quercetin on protective capacity in rats fed a high-fructose diet. Voprosy pitaniia [Problems of Nutrition]. 2018; 87 (5): 6–12. DOI: https://doi.org/10.24411/0042-8833-2018-10047 (in Russian)

30. Tran L.T., Yuen V.G., McNeill J.H. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem. 2009; 332: 145–59. DOI: https://doi.org/10.1007/s11010-009-0184-4

31. Shuto T., Kuroiwa M., Koga Y., Kawahara Y., Sotogaku N., Toyomasu K., et al. Acute effects of resveratrol to enhance cocaine-induced dopamine neurotransmission in the striatum. Neurosci Lett. 2013; 542: 107–12. DOI: https://doi.org/10.1016/j.neulet.2013.02.050

32. Morand R., Bouitbir J., Felser A., Hench J., Handschin C., Frank S., et al. Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice. Eur J Nutr. 2014; 53 (6): 1313–25. DOI: https://doi.org/10.1007/s00394-013-0631-6

33. Trusov N.V., Mzhel’skaya K.V., Shipelin V.A., Shumakova A.A., Timonin A.N., Riger N.A., et al. The influence of l-carnitine on the immunological, integral and biochemical parameters of mice receiving a diet with excess of fat and fructose. Rossiyskiy fiziologicheskiy zhurnal imeni I.M. Sechenova [Russian Journal of Physiology named after I.M. Sechenov]. 2019; 105 (5): 619–33. DOI: https://doi.org/10.1134/S0869813919050121 (in Russian)

34. Moore A., Beidler J., Hong M.Y. Resveratrol and depression in animal models: a systematic review of the biological mechanisms. Molecules. 2018; 23 (9): E2197. DOI: https://doi.org/10.3390/molecules23092197

35. Wang J., Song Y., Chen Z., Leng S.X. Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxid Med Cell Longev. 2018; 2018: 1972714. DOI: https://doi.org/10.1155/2018/1972714

36. Beaudet A.L. Brain carnitine deficiency causes nonsyndromic autism with an extreme male bias: A hypothesis. Bioessays. 2017; 39 (8): 12. DOI: https://doi.org/10.1002/bies.201700012

37. Couturier A., Ringseis R., Most E., Eder K. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. BMC Pharmacol Toxicol. 2014; 15: 37. DOI: https://doi.org/10.1186/2050-6511-15-37

38. Pannu N., Bhatnagar A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2019; 109: 2237–51. DOI: https://doi.org/10.1016/j.biopha.2018.11.075

39. Chaplin A., Carpéné C., Mercader J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients. 2018; 10 (11): E1651. DOI: https://doi.org/10.3390/nu10111651

40. Davis C.D. The gut microbiome and its role in obesity. Nutr Today. 2016; 51 (4): 167–74. DOI: https://doi.org/10.1097/NT.0000000000000167

41. Calvani M., Reda E., Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Rev Basic Res Cardiol. 2000; 95 (2): 75–83. DOI: https://doi.org/10.1007/s003950050167

42. Botros M., Sikaris K.A. The De Ritis ratio: the test of time. Clin Biochem Rev. 2013; 34: 117–30.

43. Kou L., Sun R., Ganapathy V., Yao Q., Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets. 2018; 22 (8): 715–26. DOI: https://doi.org/10.1080/14728222.2018.1502273

44. Castro-Barquero S., Lamuela-Raventós R.M., Doménech M., Estruch R. Relationship between mediterranean dietary polyphenol intake and obesity. Nutrients. 2018; 10 (10): E1523. DOI: https://doi.org/10.3390/nu10101523

45. Trepiana J., Milton-Laskibar I., Gómez-Zorita S., Eseberri I., González M., Fernández-Quintela A., et al. Involvement of 5'-activated protein kinase (AMPK) in the effects of resveratrol on liver steatosis. Int J Mol Sci. 2018; 19 (11): 3473. DOI: https://doi.org/10.3390/ijms19113473

46. Jiang F., Zhang Z., Zhang Y., Wu J., Yu L., Liu S. Lcarnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase Idependent PPARγ signaling. Mol Med Rep. 2016; 13: 1320–8. DOI: https://doi.org/10.3892/mmr.2015.4639

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»