To the content
1 . 2021

Vitamin D deficiency and carbohydrate metabolism in obese children and adolescents

Abstract

Obesity in childhood and adolescence is an important clinical and social problem in all countries, due to its extremely adverse long-term health effects. Vitamin D deficiency is extremely widespread in the world. Obesity and metabolic syndrome are often associated with vitamin D deficit. The role of vitamin D deficiency in obesity and metabolic syndrome in childhood is not well understood.

Aims - to study the relationship of vitamin D deficiency and carbohydrate metabolism parameters in school children with obesity.

Material and methods. The cross-sectional study included 71 patients of the Arkhangelsk Children’s Clinical Hospital named after P.G. Vyhletsova (32 boys, 39 girls, aged 10 to 15 years, all children live in Arkhangelsk) with abdominal obesity. An anthropometric study was conducted: height (cm), body weight (kg), waist circumference (cm), body mass index (BMI). Serum 25(OH)D level, fastingglycemia, insulin level and HOMA-IR index were assessed.

Results. It has been revealed that 98,6% of children have vitamin D deficiency of varying severity. 25(OH)D level in severely obese children (BMI>3SDS) was significantly lower than in other obese children (BMI<3SDS): 12.8 [7.3-14.9] vs 13.5 [8.9-18.2] ng/ml, (p=0.039). In children with hyperglycemia and insulin resistance, 25(OH)D levels were significantly lower compared with those who had normal glycemic parameters and HOMA-IR index.

Conclusions. The high prevalence of vitamin D deficiency in children and adolescents with overweight and obesity, progressing with increasing obesity severity, has been demonstrated. The association of glucose metabolism disorders with vitamin D deficiency has been shown.

Keywords:vitamin D, 25(OH)D, deficit, children, adolescents, obesity, body mass index, insulin resistance

Funding. The study was carried out with the technical and financial support of the Northern State Medical University (Arkhangelsk). Part of the study was carried out with the financial support of the Russian Humanitarian Science Foundation (grant 13-06-00733a 2013).

Conflict of interest. The authors declare no conflicts of interest related to the publication of this article.

For citation: Kostrova G.N., Malyavskaya S.I., Lebedev A.V. Vitamin D deficiency and carbohydrate metabolism in obese children and adolescents. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (1): 57-64. DOI: https://doi.org/10.33029/0042-8833-2021-90-1-57-64 (in Russian)

References

1. Lee B.Y., Bartsch S.M., Mui Y., et al. A systems approach to obesity. Nutr Rev. 2017; 75 (suppl 1): 94–106. DOI: http://doi.org/10.1093/nutrit/nuw049

2. Kontsevaya A., Shalnova S., Deev A., Breda J., Jewell J., Rakovac I., et al. Overweight and obesity in the Russian population: prevalence in adults and association with socioeconomic parameters and cardiovascular risk factors. Obes Facts. 2019; 12 (1): 103–14. DOI: http://doi.org/10.1159/000493885

3. Bass R., Eneli I. Severe childhood obesity: an under-recognised and growing health problem. Postgrad Med J. 2015; 91 (1081): 639–45. DOI: http://doi.org/10.1136/postgradmedj-2014-133033

4. Pereira-Santos M., Costa P.R., Assis A.M., et al. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015; 16 (4): 341–9. DOI: http://doi.org/10.1111/obr.12239

5. Nikitina I.L., Todiyeva А.М., Karonova T.L. Metabolic risks in children with obesity and deficit of vitamin D. Prakticheskaya meditsina [Practical Medicine]. 2017; (5): 48–52. (in Russian)

6. Fu Z., Xu C., Shu Y., et al. Serum 25-hydroxyvitamin D is associated with obesity and metabolic parameters in US children. Public Health Nutr. 2019; 23: 1–9. DOI: http://doi.org/10.1017/S1368980019001137

7. Vranić L., Mikolašević I., Milić S. Vitamin D deficiency: consequence or cause of obesity? Review. Medicina (Kaunas). 2019; 55 (9). DOI: http://doi.org/10.3390/medicina55090541

8. Zakharova I., Klimov L., Kuryaninova V., Nikitina I., Malyavskaya S., Dolbnya S., et al. Vitamin D insufficiency in overweight and obese children and adolescents. Front Endocrinol. 2019; 10: 103. DOI: http://doi.org/10.3389/fendo.2019.00103

9. Hypponen E., Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr. 2007; 85 (3): 860–8. DOI: http://doi.org/10.1093/ajcn/85.3.860

10. Yao Y., Zhu L., He L., et al. A meta-analysis of the relationship between vitamin D deficiency and obesity. Int J Clin Exp Med. 2015; 8 (9): 14 977–84.

11. Carrelli A., Bucovsky M., Horst R., et al. Vitamin D storage in adipose tissue of obese and normal weight women. J Bone Miner Res. 2017; 32 (2): 237242. DOI: http://doi.org/10.1002/jbmr.2979

12. Wamberg L., Christiansen T., Paulsen S.K., et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue-the effect of obesity and diet-induced weight loss. Int J Obes (Lond). 2012; 37: 651–7. DOI: http://doi.org/10.1038/ijo.2012.112

13. Roizen J.D., Long C., Casella A., et al. obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J Bone Miner Res. 2019; 34 (6): 1068–73. DOI: http://doi.org/10.1002/jbmr.3686

14. Szymczak-Pajor I., Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients. 2019; 11 (4): 794. DOI: http://doi.org/10.3390/nu11040794

15. Mousa A., Naderpoor N., Teede H., et al. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and metaanalysis of randomized controlled trials. Nutr Rev. 2018; 76: 380–94. DOI: http://doi.org/10.1093/nutrit/nux077

16. Klöting N., Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014; 15 (4): 277–87. DOI: http://doi.org/10.1007/s11154-014-9301-0

17. Pascale A.V., Finelli R., Giannotti R., Visco V., Fabbricatore D., Matula I., et al. Vitamin D, parathyroid hormone and cardiovascular risk: the good, the bad and the ugly. J Cardiovasc Med (Hagerstown). 2018; 19 (2): 62–6. DOI: http://doi.org/10.2459/JCM.0000000000000614

18. Raposo L., Martins S., Ferreira D., et al. Vitamin D, parathyroid hormone and metabolic syndrome – the PORMETS study. BMC Endocr Disord. 2017; 17 (1): 71. DOI: http://doi.org/10.1186/s12902-017-0221-3

19. Kong J., Li C.Y. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006; 290: E916–924. DOI: http://doi.org/10.1152/ajpendo.00410.2005

20. Bandera M.B., Tinahones F.J., Macías-González M. Commonalities in the association between PPARG and vitamin D related with obesity and carcinogenesis. PPAR Res. 2016; 2016: 2308249. DOI: http://doi.org/10.1155/2016/2308249

21. Mathieu S.V., Fischer K., Dawson-Hughes B., et al. Association between 25-hydroxyvitamin D status and components of body composition and glucose metabolism in older men and women. Nutrients. 2018; 10 (12): 1826. DOI: http://doi.org/10.3390/nu10121826

22. Malyavskaya S.I., Lebedev A. V., Kostrova G. N. Components of the metabolic syndrome in children and adolescents with different levels of vitamin D: a cross-sectional study. Voprosy sovremennoy pediatrii [Problems of Modern Pediatrics]. 2017; 16 (3): 213–9. DOI: http://doi.org/10.15690/vsp.v16i3.1731 (in Russian)

23. Malyavskaya S.I., Lebedev A. The relevance of metabolic phenotypes of obesity in childhood and adolescence. Al’manakh klinicheskoy meditsiny [Almanac of Clinical Medicine]. 2015; (42): 38–45. DOI: http://doi.org/10.18786/2072-0505-2015-42-38-45 (in Russian)

24. Malyavskaya S.I., Lebedev A. V.The metabolic portrait of obese children. Rossiyskiy vestnik perinatologii i pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2015; (6): 73–81. (in Russian)

25. WHO Growth reference 5–19 years. BMI-for-age (5–19 years). URL: https://www.who.int/growthref/who2007_bmi_for_age/en/ (date of access October 01, 2020)

26. Federal clinical guidelines (protocols) on management of children with endocrine pathology. In: I.I. Dedov, V.A. Peterkova (eds). Moscow: Praktika, 2014: 442 p. (in Russian)

27. Vasyukova O.V., Vitebskaya A.V. Insulin resistance in obese children: debate on assessment. Problemy endokrinologii [Problems of Endocrinology]. 2009; 55 (3): 8–12. DOI: https://doi.org/10.14341/probl20095538-12 (in Russian)

28. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96 (7): 1911–30. DOI: http://doi.org/10.1210/jc.2011-0385

29. Malyavskaya S.I., Kostrova G.N., Lebedev А.V., Golysheva Е.V. Provision of different age-group populations of Arkhangelsk city with vitamin D. Ekologiya cheloveka [Human Ecology]. 2016; (12): 37–42. (in Russian)

30. Jang H., Lee Y., Park K. Obesity and vitamin D insufficiency among adolescent girls and young adult women from Korea. Nutrients. 2019; 11 (12): 3049. DOI: http://doi.org/10.3390/nu11123049

31. Walsh J.S., Bowles S., Evans A.L. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes. 2017; 24: 389–94. DOI: http://doi.org/10.1097/MED.0000000000000371

32. Gangloff A., Bergeron J., Lemieux I., Després J.-P. Changes in circulating vitamin D levels with loss of adipose tissue. Curr Opin Clin Nutr Metab Care. 2016; 19: 464–70. DOI: http://doi.org/10.1097/MCO.0000000000000315

33. Pigarova E.A., Rozhinskaya L.Y., Belaya J.E., Dzeranova L.K., Karonova T.L., Il’yin A.V., et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problemy endokrinologii [Problems of Endocrinology]. 2016; 62 (4): 60–84. DOI: https://doi.org/10.14341/probl201662460-84 (in Russian)

34. National program «Vitamin D deficiency in children and adolescents of the Russian Federation: modern approaches to treatment». In: Union of Pediatrcians of Russia, et al. Moscow: Pediatr, 2018: 96 p. (in Russian)

35. Wimalawansa S.J. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018; 175: 177–89. DOI: http://doi.org/10.1016/j.jsbmb.2016.09.017

36. Manna P., Achari A.E., Jain S.K. 1,25(OH)2-vitamin D3 upregulates glucose uptake mediated by SIRT1/IRS1/GLUT4 signaling cascade in C2C12 myotubes. Mol Cell Biochem. 2018; 444: 103–8. DOI: http://doi.org/10.1007/s11010-017-3235-2

37. Rafiq S., Jeppesen P.B. Is hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: a systematic review and meta-analysis of observational studies. Nutrients. 2018; 10 (1): 1–18. DOI: http://doi.org/10.3390/nu10010059

38. Greco E.A., Lenzi A., Migliaccio S. Role of hypovitaminosis D in the pathogenesis of obesity-induced insulin resistance. Nutrients. 2019; 11 (7): 1506. DOI: http://doi.org/10.3390/nu11071506

39. Alkharfy K.M., Al-Daghri N.M., Yakout S.M., et al. Influence of vitamin D treatment on transcriptional regulation of insulin-sensitive genes. Metab Syndr Relat Disord. 2013; 11 (4): 283–8. DOI: http://doi.org/10.1089/met.2012.0068

40. Manna P., Jain S.K. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J Biol Chem. 2012; 287 (50): 42 324–32. DOI: http://doi.org/10.1074/jbc.M112.407833

41. Sergeev I.N. 1,25-Dihydroxyvitamin D3 and type 2 diabetes: Ca2+-dependent molecular mechanisms and the role of vitamin D status. Horm Mol Biol Clin Investig. 2016; 26 (1): 61–5. DOI: http://doi.org/10.1515/hmbci-2015-0069

42. Mousa A., Naderpoor N., Teede H., et al. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2018; 76: 380–94. DOI: http://doi.org/10.1093/nutrit/nux077

SCImago Journal & Country Rank
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)
Medicine today

II Конференция онкологов Московской области Москва, 4 июня 2021 года Подмосковье в настоящее время - это регион, переживающий бурный прирост населения и активную урбанизацию. Эти процессы требуют изменений в организации оказания медицинской помощи, в первую очередь,...

Приглашаем вас принять активное участие в работе XII Международной конференции "Актуальные аспекты экстракорпорального очищения крови в интенсивной терапии". Мероприятие пройдет 28-29 мая 2021 года в онлайн-формате. Конференция организована при поддержке Министерства...

Конференция РАРЧ "Репродуктивное здоровье и эпидемия COVID-19: год спустя" 8 июня 2021 г., онлайн Коронавирусная инфекция внесла существенные коррективы в работу специалистов в области репродуктивного здоровья. За прошедший год мы преодолели множество совершенно необычных...


Journals of «GEOTAR-Media»