To the content
1 . 2021

Curcumin in the correction of oxidative and immune disorders during exercises

Abstract

Oxidative and immune dysfunctions during physical exertion can be associated with a violation of enzyme systems and antioxidant protection, the state of innate and adaptive immunity. This creates the preconditions for their pharmacological correction.

The aim of this review is to summarize and analyze modern data on the role of curcumin, one of the components of the extract of turmeric rhizomes (Curcuma longa), in the correction of oxidative stress and immune disorders during physical exertion.

Material and methods. When writing the review, a search has been carried out for the original articles presented in PubMed, Web of Science, Google Scholar databases, eLIBRARY.RU and CyberLeninka platforms, with a randomized controlled crossover or parallel design, in which the use of curcumin administered before and/ or after exercise was compared with placebo. No filters were applied by type of exercise performed, gender or age of participants.

Results. In randomized controlled trials conducted for 2008-2020, evidences were obtained that the use of complexes containing curcumin normalizes the general antioxidant status, restores quality, quantity and functional-metabolic status of immunocytes. Data from prospective epidemiological studies show that turmeric extract exhibits partial anti-inflammatory, immunotropic and antioxidant activity in vitro and in vivo, which provides a basis for further studies on the effectiveness and systemic use of turmeric long.

Conclusion. The inclusion of turmeric extract in complex dietary regimens, including during physical activity, helps to prevent immune and oxidative disorders, and exert some anti-inflammatory effect.

Keywords:curcumin, turmeric, oxidative stress, physical activity, innate immunity

Funding. The study did not have sponsorship.

Conflict of interests. The authors declare no conflicts of interests.

For citation: Gizinger O.A., Khisamova A.A. Curcumin in the correction of oxidative and immune disorders during exercises. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (1): 65-73. DOI: https://doi.org/10.33029/0042-8833-2021-90-1-65-73 (in Russian)

References

1. Steinbacher P., Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015; 5 (2): 356–77. DOI: https://doi.org/10.3390/biom5020356

2. Cooper C.E., Vollaard N.B.J., Choueiri T., Wilson M.T. Exercise, free radicals and oxidative stress. Biochem Soc Transact. 2002; 30 (2): 280–5. DOI: https://doi.org/10.1042/bst0300280

3. Dinstel R.R., Cascio J., Koukel S. The antioxidant level of Alaska’s wild berries: high, higher and highest. Int J Circumpolar Health. 2013; 72: 21188. DOI: https://doi.org/10.3402/ijch.v72i0.21188

4. Tidball J.G. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005; 288 (2): 345–53. DOI: https://doi.org/10.1152/ajpregu.00454.2004

5. Lin X., Bai D., Wei Z., Zhang Y., Huang Y., Deng H., et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019; 14 (5): 0216711. DOI: https://doi.org/10.1371/journal.pone.0216711

6. Joe B., Lokesh B.R. Role of capsaicin, curcumin, and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta. 1994; 1224 (2): 255–63. DOI: https://doi.org/10.1016/0167-4889(94)90198-8

7. Stanić Z. Curcumin a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum Nutr. 2017; 72 (1): 1–12. DOI: https://doi.org/10.1007/s11130-016-0590-1

8. Ahmad R.S., Hussain M.B., Sultan M.T., Arshad M.S., Waheed M., Shariati M.A., et al. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review. Evid Based Complement Alternat Med. 2020; 2020: 7656919. DOI: https://doi.org/10.1155/2020/7656919

9. Kunnumakkara A.B., Bordoloi D., Padmavathi G., Monisha J., Roy N.K., Prasad S., et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017; 174 (11): 1325–48. DOI: https://doi.org/10.1111/bph.13621

10. Pingitore A., Lima G.P.P., Mastorci F., Quinones A., Iervasi G., Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015; 31: 916–22. DOI: https://doi.org/10.1016/j.nut.2015.02.005

11. Newsholme P., Cruzat V.F., Keane K.N., Carlessi R., de Bittencourt P.I. Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016; 473 (24): 4527–50. DOI: https://doi.org/10.1042/BCJ20160503C

12. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24 (10): 453–62. DOI: https://doi.org/10.1016/j.cub.2014.03.034

13. Ayala A., Munoz M.F., Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014: 3604385. DOI: https://doi.org/10.1155/2014/360438

14. Sharifi-Rad M., Anil Kumar N.V. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020; 11: 694. DOI: https://doi.org/10.3389/fphys.2020.00694

15. Stepovaya E.A., et al. The role of oxidative protein modification and the gluthatione system in modulation of the redox status of breast epithelial cells. Biomeditsinskaya khimiya [Biomedical Chemistry]. 2016; 62 (1): 64–8. DOI: http://doi.org/10.18097/PBMC20166201064 (in Russian)

16. Taherkhani S., Suzuki K., Castell L. A short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants. 2020; 9: 886. DOI: https://doi.org/10.3390/antiox9090886

17. Eijsvogels T.M., Fernandez A.B., Thompson P.D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev. 2016; 96 (1): 99–125. DOI: https://doi.org/10.1152/physrev.00029.2014

18. Blinova T.V., Strakhova L.A., Kolesov S.A. The effect of intense physical exertion on the biochemical parameters of antioxidant protection systems and nitric oxide in swimming athletes Meditsina truda i promyshlennaya ekologiya [Occupational Medicine and Industrial Ecology]. 2019; 1 (10): 860–5. DOI: https://doi.org/10.31089/1026-9428-2019-59-10-860-865 (in Russian)

19. Kasapoglu M., Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001; 36 (2): 209–20. DOI: https://doi.org/10.1016/s0531-5565(00)00198-4

20. Xiong Y., Xiong Y., Wang Y., Zhao Y., Li Y., Ren Y., et al. Exhaustive-exercise-induced oxidative stress alteration of erythrocyte oxygen release capacity. Can J Physiol Pharmacol. 2018; 96 (9): 953–62. DOI: https://doi.org/10.1139/cjpp-2017-0691

21. Kumar A., Singh A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine. 2008; 15 (8): 577–86. DOI: https://doi.org/10.1016/j.phymed.2008.02.003

22. Kupriyanov S.V., Luzikova E.M., Erkenov D.A. The effect of melatonin on the antioxidant status of athletes under conditions of intense physical activity. Nauka i sport: sovremennye tendentsii [Science and Sport: Current Trends]. 2018; 19 (2): 22–6. (in Russian)

23. Tomczak A., Jówko E., Różański P. Survival training effects on oxidative stress and muscle damage biomarkers of naval cadets. Aerosp Med Hum Perform. 2020; 91 (9): 720–4. DOI: https://doi.org/10.3357/AMHP.5536.2020

24. Ristow M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA. 2009; 106 (21): 8665–70. DOI: https://doi.org/10.1073/pnas.0903485106

25. Rahmani A.H., Alsahli M.A., Aly S.M., Khan M.A., Aldebasi Y.H. Role of curcumin in disease prevention and treatment. Adv Biomed Res. 2018; 7 (38). DOI: https://doi.org/10.4103/abr.abr_147_16.

26. Sanatombi R., Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: a review. Int J Food Properties. 2017; 2017: S2668–87. DOI: https://doi.org/10.1080/10942912.2017.1387556

27. Govindarajan V.S. Turmeric-chemistry, technology and quality. CRC Crit Rev Food Sci Nutr. 1980; 12: 199–301. DOI: https://doi.org/10.1080/10408398009527278

28. Lee S.M., Chiang S.H., Wang H.Y, Wu P.S., Lin C.C. Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. Biosci Biotechnol Biochem. 2015; 79 (2): 247–52. DOI: https://doi.org/10.1080/09168451.2014.972324

29. Prasad S., Tyagi A.K., Aggarwal B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 2014; 46: 2–18. DOI: https://doi.org/10.4143/crt.2014.46.1.2

30. Lestari M.L., Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol. 2014; 39: 113–204. DOI: https://doi.org/10.1016/b978-0-12-800173-8.00003-9

31. Duke J.A. CRC Handbook of Medicinal Spices. New York: CRC Press, 2002: 137–44.

32. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012; 441 (2): 523–40. DOI: https://doi.org/10.1042/BJ20111451

33. Dall’Acqua S., Stocchero M., Boschiero I., Schiavon M., Golob S., Uddin J., et al. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach. Fitoterapia. 2016; 109: 125–31. DOI: https://doi.org/10.1016/j.fitote.2015.12.013

34. Ms S.A.B., Waldman H.S., Krings B.M., Lamberth J., Smith J.W., McAllister M.J. Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness. J Diet Suppl. 2020; 17 (4): 401–14. DOI: https://doi.org/10.1080/19390211.2019.1604604

35. Xu X.Y., Meng X., Li S., Gan R.Y., Li Y., Li H.B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients. 2018; 10 (10): 1553. DOI: https://doi.org/10.3390/nu10101553.

36. Fernández-Lázaro D., Mielgo-Ayuso J., Seco Calvo J., Córdova Martínez A., Caballero García A., Fernandez-Lazaro C.I. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review. Nutrients. 2020; 12 (2): 501. DOI: https://doi.org/10.3390/nu12020501

37. Kotha R.R., Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019; 24 (16): 2930. DOI: https://doi.org/10.3390/molecules24162930

38. Na L.X., Yan B.L., Jiang S., Cui H.L., Li Y., Sun C.H. Curcuminoids target decreasing serum adipocyte-fatty acid binding protein levels in their glucose-lowering effect in patients with type 2 diabetes. Biomed Environ Sci. 2014; 27 (11): 902–6. DOI: https://doi.org/10.3967/bes2014.127.

39. Boz I., Belviranli M., Okudan N. Curcumin modulates muscle damage but not oxidative stress and antioxidant defense following eccentric exercise in rats. Int J Vitam Nutr Res. 2014; 84 (3–4): 163–72. DOI: https://doi.org/10.1016/b978-0-12-398397-8.00008-3

40. Tranchida F., Rakotoniaina Z., Shintu L., Tchiakpe L., Deyris V., Yemloul M., et al. Hepatic metabolic effects of Curcuma longa extract supplement in high-fructose and saturated fat fed rats. Sci Rep. 2017; 7 (1): 5880. DOI: https://doi.org/10.1038/s41598-017-06220-0

41. Trujillo J., Granados-Castro L.F., Zazueta C., Andérica-Romero A.C., Chirino Y.I., Pedraza-Chaverrí J. Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm (Weinheim). 2014; 347 (12): 873–84. DOI: https://doi.org/10.1002/ardp.201400266

42. Yoon W.Y., Lee K., Kim J. Curcumin supplementation and delayed onset muscle soreness (DOMS): effects, mechanisms, and practical considerations. Phys Act Nutr. 2020; 24 (3): 39–43. DOI: https://doi.org/10.20463/pan.2020.0020

43. Sciberras J.N., Galloway S.D., Fenech A., Grech G., Farrugia C., Duca D., et al. The effect of turmeric (Curcumin) supplementation on cytokine and inflammatory marker responses following 2 hours of endurance cycling. J Int Soc Sports Nutr. 2015; 12 (1): 5. DOI: https://doi.org/10.1186/s12970-014-0066-3

44. Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review. Phytother Res. 2018; 32 (6): 985–95. DOI: https://doi.org/10.1002/ptr.6054

45. Kumar A., Sasmal D., Jadav S.S., Sharma N. Mechanism of immunoprotective effects of curcumin in DLM-induced thymic apoptosis and altered immune function: an in silico and in vitro study. Immunopharmacol Immunotoxicol. 2015; 37 (6): 488–98. DOI: https://doi.org/10.3109/08923973.2015.1091004

46. Cianciulli A., Calvello R., Porro C., Trotta T., Salvatore R., Panaro M.A. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016; 36: 282–90. DOI: https://doi.org/10.1016/j.intimp.2016.05.007

47. Disilvestro R.A., Joseph E., Zhao S., Joshua B. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012; 11 (1): 79. DOI: https://doi.org/10.1186/1475-2891-11-79

48. Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007; 4 (6): 807–18. DOI: https://doi.org/10.1021/mp700113r

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»