To the content
2 . 2021

Prospects of probiotic strains of bifidobacteria and enterococcus in treatment and prevention of diseases in gastroenterology

Abstract

Variability of the intestinal microbiota has been under close scientific study in recent years; more and more studies confirm specific changes in microbiota under certain pathologies. Enterococcus faecium and Bifidobacterium longum strains are naturally occurring symbiotic bacteria that inhabit the gastrointestinal tract. The safety and efficacy profile of bifidobacteria, widely used as probiotics, has been thoroughly studied. Deviations in species composition, diversity, and relative abundance have been reported for some diseases.

The aim of the research was to substantiate the need and to study the prospects for the inclusion of probiotics strains of bifidobacteria and enterococci in the complex therapy of gastroenterological diseases.

Material and methods. The data from MEDLINE and PubMed-NCBI bibliographic databases have been analyzed in this review.

Results and discussion. The published data indicate the positive effect of bifidobacteria on human health, starting from a direct effect inside the gastrointestinal tract, moving to modulating the immune system and, in general, the systemic effect of probiotics on the organism by changing the level of various mediators. Probiotic strains of Enterococcus faecium contribute to the preservation and growth of endogenous species of bifidobacteria and lactobacilli. Additional intake, as well as stimulation of the growth and activity of probiotic strains in the intestine can be considered as a potential approach to combating foodborne intestinal pathogens, to the treatment of lactase deficiency and irritable bowel syndrome.

Conclusion. The inclusion of probiotics in the complex therapy of lactase deficiency, irritable bowel syndrome, as well as antibiotic-associated diarrhea is pathogenetically substantiated.

Keywords:probiotics, intestinal microbiota, anti-inflammatory effect, lactase deficiency, antibiotic-associated diarrhea, irritable bowel syndrome, Bifidobacterium longum, Enterococcus faecium

Funding. The study was carried out without financial support.

Conflict of interests. The authors declare no conflicts of interest.

For citation: Shikh E.V., Makhova A.A., Astapovskiy A.A., Perkov A.V. Prospects of probiotic strains of bifidobacteria and enterococcus in treatment and prevention of diseases in gastroenterology. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (2): 15-25. DOI: https://doi.org/10.33029/0042-8833-2021-90-2-15-25 (in Russian)

References

1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11: 506–14.

2. Singh R.K., Chang H.W., Yan D., et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017; 15 (1): 73. Epub 2017 Apr 8. DOI: https://doi.org/10.1186/s12967-017-1175-y

3. Arboleya S., Watkins C., Stanton C., Ross R.P. Gut bifidobacteria populations in human health and aging. Front Microbiol. 2016; 7: 1204. DOI: https://doi.org/10.3389/fmicb.2016.01204

4. Khaneghaha A.M., Abharib K., Eş I., Soaresa M.B., Oliveiraa R.B.A., Hosseinib H., et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Trends Food Sci Technol. 2020; 95: 205–18.

5. Chichlowski M., Shah N., Wampler J.L., Wu S.S., Vanderhoof J.A. Bifidobacterium longum Subspecies infantis (B. infantis) in pediatric nutrition: current state of knowledge. Nutrients. 2020; 12 (6): 1581. DOI: https://doi.org/10.3390/nu12061581

6. Koutnikova H., Genser B., Monteiro-Sepulveda M., et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019; 9 (3): e017995. DOI: https://doi.org/10.1136/bmjopen-2017-017995

7. Putignani L., Del Chierico F., Petrucca A., Vernocchi P., Dallapiccola B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014; 76: 2–10. DOI: https://doi.org/10.1038/pr.2014.49

8. Ganji-Arjenaki M., Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: a meta-analysis and systematic review. J Cell Physiol. 2018; 233 (3): 2091–103. DOI: https://doi.org/10.1002/jcp.25911

9. Ford A.C., Harris L.A., Lacy B.E., Quigley E.M.M., Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 2018; 48 (10): 1044–60. DOI: https://doi.org/10.1111/apt.15001

10. Distrutti E., Monaldi L., Ricci P., Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol. 2016; 22 (7): 2219–41. DOI: https://doi.org/10.3748/wjg.v22.i7.2219

11. Aden K., Rehman A., Waschina S., Pan W.H., Walker A., Lucio M., et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases. Gastroenterology. 2019; 157 (5): 1279–2.e11. DOI: https://doi.org/10.1053/j.gastro.2019.07.025 Epub 2019 Jul 18. PMID: 31326413.

12. Clinical response and changes of cytokines and zonulin levels in patients with diarrhoea-predominant irritable bowel syndrome treated with bifidobacterium longum ES1 for 8 or 12 weeks: a preliminary report. J Clin Med. 2020; 9 (8): 2353.

13. Kuehbacher T., Rehman A., Lepage P., Hellmig S., Fölsch U.R., Schreiber S., et al. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol. 2008; 57: 1569–76.

14. Bonfrate L., Di Palo D.M., Celano G., Albert A., Vitellio P., De Angelis M., et al. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients. Eur J Clin Invest. 2020; 50: e13201.

15. Martínez-González A.E., Andreo-Martínez P. The role of gut microbiota in gastrointestinal symptoms of children with ASD. Medicina (Kaunas). 2019; 55 (8): 408. DOI: https://doi.org/10.3390/medicina55080408

16. Asha M.Z., Khalil S.F.H. Efficacy and safety of probiotics, prebiotics and synbiotics in the treatment of irritable bowel syndrome: a systematic review and meta-analysis. Sultan Qaboos Univ Med J. 2020; 20 (1): e13–24. DOI: https://doi.org/10.18295/squmj.2020.20.01.003

17. Drozdov V.N., Astapovsky A.A., Serebrova S.Yu., Lazareva N.B., Shikh E.V. Clinical efficacy of probiotic strains of the Bifidobacterium and Lactobacillus. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (2): 107–15. DOI: https://doi.org/10.24411/0042-8833-2020-10021 (in Russian)

18. Hell M., Bernhofer C., Stalzer P., Kern J.M., Claassen E. Probiotics in Clostridium difficile infection: Reviewing the need for a multistrain probiotic. Benef Microbes 2013; 4: 39–51.

19. Ma Y., Yang J.Y., Peng X., Xiao K.Y., Xu Q., Wang C. Which probiotic has the best effect on preventing Clostridium difficile-associated diarrhea? A systematic review and network meta-analysis. J Dig Dis. 2020; 21 (2): 69–80. DOI: https://doi.org/10.1111/1751-2980.12839

20. Johnston B.C., Lytvyn L., Lo C.K., Allen S.J., Wang D., Szajewska H., et al. Microbial preparations (probiotics) for the prevention of Clostridium difficile infection in adults and children: an individual patient data meta-analysis of 6,851 participants. Infect Control Hosp Epidemiol. 2018; 39 (7): 771–81. DOI: https://doi.org/10.1017/ice.2018.84. Erratum in: Infect Control Hosp Epidemiol. 2018; 39 (7): 894. PMID: 29695312.

21. Mohammadi H., Ghavami A., Hadi A., Askari G., Symonds M., Miraghajani M. Effects of pro-/synbiotic supplementation on anthropometric and metabolic indices in overweight or obese children and adolescents: a systematic review and meta-analysis. Complement Ther Med. 2019; 44: 269–76. DOI: https://doi.org/10.1016/j.ctim.2019.05.008

22. Taddei C.R., Cortez R.V., Mattar R., Torloni M.R., Daher S. Microbiome in normal and pathological pregnancies: a literature overview. Am J Reprod Immunol. 2018; 80 (2): e12993. DOI: https://doi.org/10.1111/aji.12993

23. Collado M.C., Isolauri E., Laitinen K., Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008; 88 (4): 894–9. DOI: https://doi.org/10.1093/ajcn/88.4.894

24. Hevia A., Milani C., Lopez P., Donado C.D., Cuervo A., Gonzalez S., et al. Allergic patients with long-term asthma display low levels of Bifidobacterium adolescentis. PLoS One. 2016; 11: e0147809. DOI: https://doi.org/10.1371/journal.pone.0147809

25. Akay H. K., Bahar Tokman H., Hatipoglu N., Hatipoglu H., Siraneci R., Demirci M., et al. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0–3 years-old children in Turkey. Anaerobe. 2014; 28: 98–103. DOI: https://doi.org/10.1016/j.anaerobe.2014.05.006

26. Abdelhamid A.G., El-Masry S.S., El-Dougdoug N.K. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 2019; 10 (4): 337–50. DOI: https://doi.org/10.1007/s13167-019-00184-z

27. Murri M., Leiva I., Gomez-Zumaquero J.M., Tinahones F.J., Cardona F., Soriguer F., et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013; 11: 46. DOI: https://doi.org/10.1186/1741-7015-11-46

28. Wang Y., Li X., Ge T., Xiao Y., Liao Y., Cui Y., et al. Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and metaanalysis of randomized controlled trials. Medicine (Baltimore). 2016; 95: e4509.

29. Kanauchi O., Andoh A., Abubakar S., Yamamoto N. Probiotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Curr Pharm Des. 2018; 24: 710–7.

30. Morrow L.E., Kollef, M.H., Casale T.B. Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med. 2010; 182: 1058–64.

31. Eurosurveillance Editorial Team. Latest updates on COVID-19 from the European Centre for Disease Prevention and Control. Euro Surveill. 2020; 25 (6): 2002131.

32. Guardamagna O., Amaretti A., Puddu P.E., Raimondi S., Abello F., Cagliero P., et al. Bifidobacteria supplementation: effects on plasma lipid profiles in dyslipidemic children. Nutrition. 2014; 30: 831–6. DOI: https://doi.org/10.1016/j.nut.2014.01.014

33. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011; 23: 1132–9. DOI: https://doi.org/10.1111/j.1365-2982.2011.01796.x

34. Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015; 350: 1084–89. DOI: https://doi.org/10.1126/science.aac4255

35. Leis R., de Castro M.J., de Lamas C., Picáns R., Couce M.L. Effects of prebiotic and probiotic supplementation on lactase deficiency and lactose intolerance: a systematic review of controlled trials. Nutrients. 2020; 12 (5): 1487. DOI: https://doi.org/10.3390/nu12051487 PMID: 32443748; PMCID: PMC7284493.

36. Silberman E.S., Jin J. Lactose intolerance. JAMA. 2019; 322: 1620. DOI: https://doi.org/10.1001/jama.2019.9608

37. Szilagyi A., Galiatsatos P., Xue X.A. Systematic review and meta-analysis of lactose digestion, its impact on intolerance and nutritional effects of dairy food restriction in inflammatory bowel diseases. Nutr J. 2016; 15: 67. DOI: https://doi.org/10.1186/s12937-016-0183-8

38. Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.J., Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020; 12 (2): 381. DOI: https://doi.org/10.3390/nu12020381

39. Hodges J.K., Cao S., Cladis D.P., Weaver C.M. Lactose intolerance and bone health: the challenge of ensuring adequate calcium intake. Nutrients. 2019; 11: 718. DOI: https://doi.org/10.3390/nu11040718

40. Savaiano D.A. Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr. 2014; 99: 1251S–5S. DOI: https://doi.org/10.3945/ajcn.113.073023

41. Vitellio P., Celano G., Bonfrate L., Gobbetti M., Portincasa P., De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: a randomised, double-blind, cross-over study. Nutrients. 2019; 11 (4): 886. DOI: https://doi.org/10.3390/nu11040886

42. Zhou X., Willems R.J.L., Friedrich A.W., Rossen J.W.A., Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control. 2020; 9 (1): 130. Epub 2020 Aug 10. DOI: https://doi.org/10.1186/s13756-020-00770-1

43. Galloway-Pena J., Roh J.H., Latorre M., Qin X., Murray B.E. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One. 2012; 7 (1): e30187.

44. Santos D.D.S., Calaça P.R.A., Porto A.L.F., de Souza P.R.E., de Freitas N.S.A., Cavalcanti Vieira Soares M.T. What Differentiates probiotic from pathogenic bacteria? The genetic mobility of Enterococcus faecium offers new molecular insights. OMICS. 2020; 24 (12): 706–13. DOI: https://doi.org/10.1089/omi.2020.0078

45. Simanenkov V.I., Suvorov A.N., Zakharenko S.M., Bochkareva A.N., Sundukova Z.R. Post-infection irritable bowel syndrome: is there place for probiotics in therapy? Infektsionnye bolezni [Infectious Diseases]. 2009; 7 (3): 68–75. (in Russian)

46. Feklisova L.V. Clinical and laboratory controlled study of the effectiveness of a probiotic with the Enterococcus faecium SF-68 strain in the treatment of children with rotavirus gastroenteritis. Vrach [Physician]. 2007; (8): 57–61. (in Russian)

47. Gonchar N.V., Alekhina L.A., Suvorov A.N. Probiotic strains of enterococci as a means of therapy and prevention of intestinal diseases in children. Eksperimental’naya i klinicheskaya gastroenterologiya [Experimental and Clinical Gastroenterology]. 2013; (1): 74–8. (in Russian)

48. Di Pierro F., Lo Russo P., Danza M.L., Basile I., Soardo S., Capocasale G., et al. Use of a probiotic mixture containing Bifidobacterium animalis subsp. lactis BB-12 and Enterococcus faecium L3 as prophylaxis to reduce the incidence of acute gastroenteritis and upper respiratory tract infections in children. Minerva Pediatr. 2020 Jun 04. DOI: https://doi.org/10.23736/S0026-4946.20.05925-3

49. Shchepitova N.E., Sycheva M.V., Kartashova O.L. Screening of enterococcal strains in order to develop probiotic preparations based on them. Vestnik Orenburgskogo gosudarstvennogo universiteta [Bulletin of the Orenburg State University]. 2015; (13): 226–33. (in Russian)

50. World Gastroenterology Organisation Global Guidelines. 2017. 2017. URL: https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-russian-2017.pdf (in Russian)

51. Zakharova Yu.V., Markovskaya A.A. Influence of the adhesive activity of bacteria on their quantitative content in the intestine in HIV-infected people. Fundamental’nye issledovaniya [Fundamental Researches]. 2011; (7): 61–3. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»