To the content
2 . 2021

Zinc status improving as a pathogenetically grounded platform for maintaining immunity during SARS-CoV-2 pandemic

Abstract

The problem of increasing immunity has become especially relevant in the conditions of the rapid spread of the new coronavirus infection SARS-CoV-2. Nowadays it has been proven that a deficiency of certain micronutrients in the diet can disrupt chemical, structural and regulatory processes in the organism, which negatively affects, first of all, the state of immune system. Zinc is one of the most significant essential trace elements affecting immunological resistance.

The aim of the study was to substantiate the need of including zinc-containing products and diet supplements in the diet of the population during the SARS-CoV-2 pandemic on the basis of the study of pathogenetic mechanisms of various disorders of the immunological status under zinc deficit.

Material and methods. This review analyzes the data from scientific electronic libraries CyberLeninka, eLIBRARY.RU, the Google Scholar databases and bibliographic medical databases MEDLINE and PubMed-NCBI.

Results and discussion. During the SARS-CoV-2 pandemic, adequate zinc supply is especially important, due to its antiviral, immunomodulatory and antiapoptotic effects. This element also regulates the severity of the cytokine response, exhibits antibacterial properties and helps to compensate for chronic comorbid diseases, which plays a particularly significant role in preventing severe SARS-CoV-2 and recurrent respiratory diseases. Prevention and correction of zinc deficiency is considered as one of the important measures during the SARS-CoV-2 pandemic, aimed at increasing antiviral and general immunity, reducing the systemic inflammatory response and correcting hormonal and metabolic status.

Conclusion. The pathogenetically substantiated inclusion of zinc-containing foods and supplements in the diet will enhance the immunity of the population during the SARS-CoV-2 pandemic.

Keywords:zinc, immune resistance, zinc-containing foods, dietary supplements, pathogenetic mechanisms, zinc deficiency, SARS-CoV-2 pandemic

Funding. The study was not sponsored.

Conflict of interests. The authors declare no conflicts of interest.

For citation: Sankova M.V., Kytko O.V., Dydykina I.S., Chilikov V.V., Laptina V.I., Markina A.D. Zinc status improving as a pathogenetically grounded platform for maintaining immunity during SARS-CoV-2 pandemic. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (2): 26-39. DOI: https://doi.org/10.33029/0042-8833-2021-90-2-26-39 (in Russian)

References

1. Baloch S., Baloch M.A., Zheng T., Pei X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020; 250 (4): 271–8. DOI: https://doi.org/10.1620/tjem.250.271

2. Hemmer C.J., Geerdes-Fenge H.F., Reisinger E.C. COVID-19: Epidemiologische und klinische Fakten [COVID-19: epidemiology and clinical facts]. Radiologe. 2020; 60 (10): 893–8. [in German]. DOI: https://doi.org/10.1007/s00117-020-00741-y

3. Kogan E.A., Berezovsky Y.S., Protsenko D.D., Baghdasaryan T.R., Gretsov E.M., Demura S.A. Pathological anatomy of infection caused by SARS-COV-2. Sudebnaya meditsina [Forensic Medicine]. 2020; 6 (2): 8–30. DOI: https://doi.org/10.19048/2411-8729-2020-6-2-8-30 (in Russian)

4. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020; 41 (12): 1100–15. DOI: https://doi.org/10.1016/j.it.2020.10.004

5. Gromova O.A., Torshin I.Yu. The importance of zinc in maintaining the activity of antiviral innate immunity proteins: analysis of publications on COVID-19. Profilakticheskaya meditsina [Preventive Medicine]. 2020; 23 (3): 131–9. DOI: https://doi.org/10.17116/profmed202023031131 (in Russian)

6. Fedorov D.N., Korosteleva P.A., Zybin D.I., Popov M.A., Tjurina V.M., Varlamov A.V. Morphological and immunohistochemical characteristics of changes in the bronchopulmonary lymph nodes in patients with a new COVID-19 coronavirus infection (based on autopsy results). Al’manakh klinicheskoy meditsiny [Almanac of Clinical Medicine]. 2020; (48): 37–42. DOI: https://doi.org/10.18786/2072-0505-2020-48-034 (in Russian)

7. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015; 30 (3): 371–82. DOI: https://doi.org/10.1177/0884533615570376

8. Kumar A., Kubota Y., Chernov M., Kasuya H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med Hypotheses. 2020; 144: 109848. DOI: https://doi.org/10.1016/j.mehy.2020.109848

9. Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutel’yan V.A. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Voprosy pitaniia [Problems of Nutrition]. 2017; 86 (4): 113–24. DOI: https://doi.org/10.24411/0042-8833-2017-00067 (in Russian)

10. Maywald M., Wessels I., Rink L. Zinc signals and immunity. Int J Mol Sci. 2017; 18 (10): 2222. DOI: https://doi.org/10.3390/ijms18102222

11. Li M.M.H., Aguilar E.G., Michailidis E., Pabon J., Park P., Wu X., et al. Characterization of novel splice variants of zinc finger antiviral protein (ZAP). J Virol. 2019; 93 (18): 00715-19. DOI: https://doi.org/10.1128/JVI.00715-19

12. Ran Y., Zhang J., Liu L.L., Pan Z.Y., Nie Y., Zhang H.Y., et al. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J Mol Cell Biol. 2016; 8 (1): 31–43. DOI: https://doi.org/10.1093/jmcb/mjv068

13. Song G., Liu B., Li Z., Wu H., Wang P., Zhao K., et al. E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1. Nat Immunol. 2016; 17 (12): 1342–51. DOI: https://doi.org/10.1038/ni.3588.

14. Berezhnoy V.V., Korneva V.V. Complex approaches to curing teenage deficiencies of iron, zink and vitamins of B group. Sovremennaya pediatriya [Modern Pediatrics]. 2016; (3): 45–54. DOI: https://doi.org/10.15574/SP.2016.75.45

15. Hayakawa S., Shiratori S., Yamato H., Kameyama T., Kitatsuji C., Kashigi F., et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIGI during antiviral responses. Nat Immunol. 2011; 12 (1): 37–44. DOI: https://doi.org/10.1038/ni.1963

16. Uehata T., Takeuchi O. Regnase-1 is an endoribonuclease essential for the maintenance of immune homeostasis. J Interferon Cytokine Res. 2017; 37 (5): 220–9. DOI: https://doi.org/10.1089/jir.2017.0001

17. Nakatsuka Y., Vandenbon A., Mino T., Yoshinaga M., Uehata T., Cui X., et al. Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immunesystems to protect against pneumonia. Mucosal Immunol. 2018; 11 (4): 1203–18. DOI: https://doi.org/10.1038/s41385-018-0024-5

18. Hausburg M.A., Doles J.D., Clement S.L., Cadwallader A.B., Hall M.N., Blackshear P.J., et al. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay. Elife. 2015; 4: e03390. DOI: https://doi.org/10.7554/eLife.03390

19. Coggins S.A., Mahboubi B., Schinazi R.F., Kim B. SAMHD1 functions and human diseases. Viruses. 2020; 12 (4): 382. DOI: https://doi.org/10.3390/v12040382

20. Evankovich J., Lear T., Baldwin C., Chen Y., White V., Villandre J., et al. Toll-like receptor 8 stability is regulated by ring finger 216 in response to circulating microRNAs. Am J Respir Cell Mol. Biol. 2020; 62 (2): 157–67. DOI: https://doi.org/10.1165/rcmb.2018-0373OC

21. Chen S., Bonifati S., Qin Z., St Gelais C., Wu L. SAMHD1 suppression of antiviral immune responses. Trends Microbiol. 2019; 27 (3): 254–67. DOI: https://doi.org/10.1016/j.tim.2018.09.009

22. Kim E.T., Roche K.L., Kulej K., Spruce L.A., Seeholzer S.H., Coen D.M., et al. SAMHD1 modulates early steps during human cytomegalovirusinfection by limiting NF-κB activeation. Cell Rep. 2019; 28 (2): 434–48. DOI: https://doi.org/10.1016/j.celrep.2019.06.027

23. Shah S., Mostafa M.M., McWhae A., Traves S.L., Newton R. Negative feed-forward control of tumor necrosis factor (TNF) by tristetraprolin (ZFP36) is limited by the mitogen-activated protein kinase phosphatase, dual-specificity phosphatase 1 (DUSP1): implications for regulation by glucocorticoids. J Biol Chem. 2016; 291 (1): 110–25. DOI: https://doi.org/10.1074/jbc.M115.697599

24. Te Velthuis A.J., van den Worm S.H., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010; 6 (11): e1001176. DOI: https://doi.org/10.1371/journal.ppat.1001176

25. Gromova O.A., Torshin I.Yu., Moiseev V.S., Sorokina M.A., Limanova O.A. Regarding the use of zinc and vitamin С for the prevention and adjuvant therapy of acute respiratory infections. Terapiya [Therapy]. 2017; 1 (11): 36–46. (in Russian)

26. Read S.A., Obeid S., Ahlenstiel C., Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr. 2019; 10 (4): 696–710. DOI: https://doi.org/10.1093/advances/nmz013

27. Skalny A.V., Rink L., Ajsuvakova O.P., Aschner M., Gritsenko V.A., Alekseenko S.I., et al. Zinc and respiratory tract infections: perspectives for COVID-19 (review). Int J Mol Med. 2020; 46 (1): 17–26. DOI: DOI: https://doi.org/10.3892/ijmm.2020.4575

28. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020; 2: 137244. DOI: https://doi.org/10.1172/JCI137244

29. Oh S.Y., Chung J., Kim M.K., Kwon S.O., Cho B.H. Antioxidant nutrient intakes and corresponding biomarkers associated with the risk of atopic dermatitis in young children. Eur J Clin Nutr. 2010; 64 (3): 245–52. DOI: https://doi.org/10.1038/ejcn.2009.148

30. DiSilvestro R.A., Dardenne M., Joseph E. Comparison of thymulin activity with other measures of marginal zinc deficiency. Biol Trace Elem Res. 2021; 199 (2): 585–7. DOI: https://doi.org/10.1007/s12011-020-02159-y

31. Prasad A.S. Lessons learned from experimental human model of zinc deficiency. J Immunol Res. 2020; 2020: 9207279. DOI: https://doi.org/10.1155/2020/9207279

32. Saha A.R., Hadden E.M., Hadden J.W. Zinc induces thymulin secretion from human thymic epithelial cells in vitro and augments splenocyte and thymocyte responses in vivo. Int J Immunopharmacol. 1995; 17 (9): 729–33. DOI: https://doi.org/10.1016/0192-0561(95)00061-6

33. Kosyura S.D., Livantsova E.N., Varaeva Yu.R., Kopelev A.A., Chervyakova Yu.B., Starodubova A.V. Vitamin and mineral complexes containing Selenium and Zinc. Lechebnoe delo [Medical Care]. 2019; (1): 58–61. DOI: https://doi.org/10.31146/1682-8658-ecg-166-6-55-61 (in Russian)

34. Martines E., Reggiani P.C., Schwerdt J.I., Goya R.G., Cónsole G. Neonatal thymulin gene therapy in nude mice: effects on the morphology of the pituitary corticotrope population. Histol Histopathol. 2011; 26 (4): 471–9. DOI: https://doi.org/10.14670/HH-26.471

35. Hojyo S., Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016; 2016: 6762343. DOI: https://doi.org/10.1155/2016/6762343

36. Burikov A.V. Influence of various food ingredients on the state of immunological reactivity. Mezhdunarodniy zhurnal gumanitarnykh i estestvennykh nauk [International Journal of the Humanities and Natural Sciences]. 2018; (6-1): 5–7 (in Russian)

37. Gammoh N.Z., Rink L. Zinc in infection and inflammation. Nutrients. 2017; 9 (6): 624. DOI: https://doi.org/10.3390/nu9060624

38. Kokareva E.S., Morozov V.V., Stanishevskiy Ya.M., Zhuravleva M.A., Zubkov A.V. Research on the influence of various substances on caspase activity (review). Razrabotra i registratsiya lekarstvennykh sredstv [Drug Development and Registration]. 2018; (4): 29–36. (in Russian)

39. Eron S.J., MacPherson D.J., Dagbay K.B., Hardy J.A. Multiple mechanisms of zinc-mediated inhibition for the apoptotic caspases-3, -6, -7, and -8. ACS Chem Biol. 2018; 13 (5): 1279–90. DOI: https://doi.org/10.1021/acschembio.8b00064

40. Fukamachi Y., Karasaki Y., Sugiura T., Itoh H., Abe T., Yamamura K., et al. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun. 1998; 246 (2): 364–9. DOI: https://doi.org/10.1006/bbrc.1998.8621

41. Arentz S., Hunter J., Yang G., Goldenberg J., Beardsley J., Myers S.P., et al. Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review. Adv Integr Med. 2020; 7 (4): 252–60. DOI: https://doi.org/10.1016/j.aimed.2020.07.009

42. Khaliullina S.V. Clinical significance of zinc deficiency in the child (literature review). Vestnik sovremennoy klinicheskoy meditsiny [Bulletin of Modern Clinical Medicine]. 2013; 6 (3): 72–8. (in Russian)

43. Vu T.T., Fredenburgh J.C., Weitz J.I. Zinc: an important cofactor in haemostasis and thrombosis. Thromb Haemost. 2013; 109 (3): 421–30. DOI: https://doi.org/10.1160/TH12-07-0465

44. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18 (4): 844–47. DOI: https://doi.org/10.1111/jth.14768

45. Botella H., Peyron P., Levillain F., Poincloux R., Poquet Y., Brandli I., et al. Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe. 2011; 10 (3): 248–59. DOI: https://doi.org/10.1016/j.chom.2011.08.006

46. Ong C.L., Gillen C.M., Barnett T.C., Walker M.J., McEwan A.G. An antimicrobial role for zinc in innate immune defense against group A streptococcus. J Infect Dis. 2014; 209 (10): 1500–8. DOI: https://doi.org/10.1093/infdis/jiu053

47. Ong C.L., Walker M.J., McEwan A.G. Zinc disrupts central carbon metabolism andcapsule biosynthesis in Streptococcus pyogenes. Sci Rep. 2015; 5: 10799. DOI: https://doi.org/10.1038/srep10799

48. McDevitt C.A., Ogunniyi A.D., Valkov E., Lawrence M.C., Kobe B., McEwan A.G., et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011; 7 (11): e1002357. DOI: https://doi.org/10.1371/journal.ppat.1002357

49. Arentz S., Hunter J., Yang G., Goldenberg J., Beardsley J., Myers S.P., et al. Zinc for the prevention and treatment of SARS-CoV-2 and other acute viral respiratory infections: a rapid review. Adv Integr Med. 2020; 7 (4): 252–60. DOI: https://doi.org/10.1016/j.aimed.2020.07.009

50. Ismail I.S. The role of carbonic anhydrase in hepatic glucose production. Curr Diabetes Rev. 2018; 14 (2): 108–12. DOI: https://doi.org/10.2174/1573399812666161214122351

51. Fan E, Beitler J.R., Brochard L., Calfee C.S., Ferguson N.D., Slutsky A.S., Brodie D. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med. 2020; 8 (8): 816–21. DOI: https://doi.org/10.1016/S2213-2600(20)30304-0

52. Baltaci A.K., Mogulkoc R., Baltaci S.B. Review. The role of zinc in the endocrine system. Pak J Pharm Sci. 2019; 32 (1): 231–9.

53. Li Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine. 2014; 45 (2): 178–89. DOI: https://doi.org/10.1007/s12020-013-0032-x

54. Singh A.K., Gupta R., Ghosh A., Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020; 14 (4): 303–10. DOI: https://doi.org/10.1016/j.dsx.2020.04.004

55. Mori J., Oudit G.Y., Lopaschuk G.D. SARS-CoV-2 perturbs the renin-angiotensin system and energy metabolism. Am J Physiol Endocrinol Metab. 2020; 319 (1): E43–7. DOI: https://doi.org/10.1152/ajpendo.00219.2020

56. Limanova O.A., Torshin I.Yu., Sardaryan I.S., Kalacheva A.G., Hababpashev A., Karpuchin D., et al. Micronutrient provision and women's health: intellectual analysis of clinicoepidemiological data. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2014; 13 (2): 5–15. (in Russian)

57. Barnett J.B., Hamer D.H., Meydani S.N. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev. 2010; 68 (1): 30–7. DOI: https://doi.org/10.1111/j.1753-4887.2009.00253

58. Gorbachev A.L., Lugovaya E.A. Age-related changes in the human microelement system as a biochemical mechanism of aging. Severo-Vostochniy nauchniy zhurnal [North-Eastern Scientific Journal]. 2010; (1): 54–62. (in Russian)

59. Liu K., Chen Y., Lin R., Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020; 80 (6): e14–8. DOI: https://doi.org/10.1016/j.jinf.2020.03.005

60. Lowe N.M. Assessing zinc in humans. Curr Opin Clin Nutr Metab Care. 2016; 19 (5): 321–7. DOI: https://doi.org/10.1097/MCO.0000000000000298

61. Gal’chenko A.V., Nazarova A.M. Essential trace and ultra-trace elements in nutrition of vegetarians and vegans. Part 1. iron, zinc, copper, manganese. Mikroelementy v meditsine [Trace Elements in Medicine]. 2019; 20 (4): 1423. (in Russian)

62. McGuire E., Kam R. The roles of zinc in lactation. Breastfeed Rev. 2016; 24 (3): 41–8.

63. Ota E., Mori R., Middleton P., Tobe-Gai R., Mahomed K., Miyazaki C., et al. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. 2015; 2: CD000230. DOI: https://doi.org/10.1002/14651858.CD000230.pub5

64. Ross A.C., Caballero B.H., Cousins R.J., Tucker K.L., Ziegler T.R (eds). Modern Nutrition in Health and Disease. 11th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams and Wilkins, 2013: 1646 p.

65. Marchan R., Cadenas C., Bolt H.M. Zinc as a multipurpose trace element. Arch Toxicol. 2012; 86 (4): 519–20. DOI: https://doi.org/10.1007/s00204-012-0843-1

66. Khazaei H., Podder R., Caron C.T., Kundu S.S., Diapari M., Vandenberg A., et al. Marker-trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome. 2017; 10 (2). DOI: https://doi.org/10.3835/plantgenome2017.02.0007

67. Khabarov A.A., Budko E.V., Lushov K.A., Gorbacheva L.A., El’tsova N.O. Zinc: topicality and characteristics of dietary supplements (review). Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education]. 2012; (3): 361–1. (in Russian)

68. Gibson R.S., King J.C., Lowe N. A review of dietary zinc recommendations. Food Nutr Bull. 2016; 37 (4): 443–60. DOI: https://doi.org/10.1177/0379572116652252

69. Elisyutina O.G., Shtyrbul O.V. Zinc preparations in atopic dermatits treatment. Rossiyskiy allergologicheskiy zhurnal [Russian Allergological Journal]. 2016; (1): 47–51. (in Russian)

70. Vytovtov A.A., Malyutenkova S.M. Research and development of functional drinks on the basis of artesian water and medicinal plant raw materials. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Pishchevye i biotehnologii [Bulletin of the South Ural State University. Series: Food and Biotechnology]. 2014; 2 (4): 1726. (in Russian)

71. Bin B.H., Hojyo S., Seo J., Hara T., Takagishi T., Mishima K., et al. The role of the Slc39a family of zinc transporters in zinc homeostasis in skin. Nutrients. 2018; 10 (2): 219. DOI: https://doi.org/10.3390/nu10020219

72. Escobedo-Monge M.F., Ayala-Macedo G., Sakihara G., Peralta S., Almaraz-Gómez A., Barrado E., Marugán-Miguelsanz J.M. Effects of zinc supplementation on nutritional status in children with chronic kidney disease: a randomized trial. Nutrients. 2019; 11 (11): 2671. DOI: https://doi.org/10.3390/nu11112671

73. Carver P.L. Metal ions and infectious diseases. An overview from the clinic. Met Ions Life Sci. 2013; 13: 1–28. DOI: https://doi.org/10.1007/978-94-007-7500-8_1

74. Luo J., Mo Y., Liu M. Blood and hair zinc levels in children with attention deficit hyperactivity disorder: a meta-analysis. Asian J Psychiatr. 2020; 47: 101805. DOI: https://doi.org/10.1016/j.ajp.2019.09.023

75. Brown K.H., Hambidge K.M., Ranum P.; Zinc Fortification Working Group. Zinc fortification of cereal flours: current recommendations and research needs. Food Nutr Bull. 2010; 31 (1 suppl): S62–74. DOI: https://doi.org/10.1177/15648265100311S106

76. Carlucci P.M., Ahuja T., Petrilli C., Rajagopalan H., Jones S., Rahimian J. Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients. J Med Microbiol. 2020; 69 (10): 1228–34. DOI: https://doi.org/10.1099/jmm.0.001250

77. Babenko A.Yu., Laevskaya M.Yu. Diabetes and COVID-19. How are they related? Modern control strategies. Arterial’naya gipertenziya [Arterial Hypertension]. 2020; 26 (3): 304–11. (in Russian)

78. Thomas S., Patel D., Bittel B., Wolski K., Wang Q., Kumar A., et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Netw Open. 2021; 4 (2): e210369. DOI: https://doi.org/10.1001/jamanetworkopen.2021.0369

79. Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: a report on four patients. Int J Infect Dis. 2020; 99: 307–9. DOI: https://doi.org/10.1016/j.ijid.2020.06.006

80. Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017; 8 (5): 2054270417694291. DOI: https://doi.org/10.1177/2054270417694291

81. Trisvetova E.L. Magnesium homeostasis and aging. Meditsinskie novosti [Medical News]. 2018; 2 (281): 45–50. (in Russian)

82. Artyukh T.V., Sokolova T.N., Pavlyukovets A.Yu., Sluchich O.I. Modulating effect of tryptophan and zinc aspartate on the sensitivity of microorganisms to doxycycline. In: Sbornik materialov mezhvuzovskoy nauchno-prakticheskoy konferentsii «Aktual'nye voprosy mikrobiologii, immunologii i infektologii» [Proceedings of the Interuniversity Scientific and Practical Conference «Actual Problems of Microbiology, Immunology and Infectious Diseases»]. Grodno: GrGMU, 2020: 16 (in Russian)

83. Barrie S.A., Wright J.V., Pizzorno J.E., Kutter E., Barron P.C. Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agents Actions. 1987; 21 (1-2): 223–8. DOI: https://doi.org/10.1007/BF01974946

84. Zorin S.N., Sidorova Yu.S., Zilova I.S., Mazo V.K. Complex of zinc with enzymatic hydrolysate of pigspleen protein – in vivo investigation. Voprosy pitaniia [Problems of Nutrition]. 2014; 83 (5): 58–63. DOI: https://doi.org/10.24411/0042-8833-2014-00050 (in Russian)

85. Grechko A.V., Evdokimov E.A., Kotenko O.N., Krylov K.Uu., Kryukov E.V., Luft V.M., et al. Nutritional support for patients with COVID-19 coronavirus infection. Klinicheskoe pitanie i metabolism [Clinical Nutrition and Metabolism]. 2020; 1 (2): 56–91. DOI: https://doi.org/10.36425/clinnutrit42278 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»