To the content
4 . 2021

Dietary fiber as modulators of gastrointestinal hormonal peptide secretion

Abstract

The review provides information on the effect of dietary fibers on the production of key gastrointestinal hormonal peptides that affect eating behavior and the formation of feelings of hunger and satiety. The mechanisms of action of dietary fiber on the production of appetite-regulating peptides are discussed. Modulation of gastrointestinal hormonal peptide secretion by dietary fibers is involved in the regulation of the balance of energy, appetite, and body weight.

The aim of the research was to expand the understanding about the effects of dietary fiber on the secretion of major gastrointestinal hormonal peptides involved in appetite control, the formation of feelings of hunger, satiety and satiation.

Results. Gastrointestinal hormones, as physiological regulators of food intake, play an essential role in the formation of feelings of hunger, satiety and satiation, helping to reduce appetite and maintain normal body weight. Various dietary fibers, depending on the physic-chemical properties, the amount and duration of the consumption period, can have a modulating effect on the secretion of the hunger hormone ghrelin and the hormones of satiety: leptin and intestinal peptides (glucagon-like peptide-1, cholecystokinin and YY peptide).

Conclusion. Dietary fiber influence on processes of energy intake, food ingestion and nutrient absorption in gastrointestinal tract, enhance neuroendocrine responses, modulate release of appetite-regulating hormones involved in energy balance and regulation of feelings of hunger and satiety. The possibility to promote a favorable profile of the endogenic gastrointestinal hormones by inclusion of dietary fiber in food ration both in the form of the natural food and additionally as dietary supplements is of interest as one from strategies of over appetite control and normal body weight maintenance.

Keywords:dietary fiber, gastrointestinal hormonal peptides, secretion, satiety, satiation, hunger, appetite, weight

Funding. The paper was carried out on the theme of research work: «Mechanisms of appetite regulation by indigestible polysaccharides of food», № GR AAAA-A17-117012310147-8 (2017-2020).

Conflict of interest. The authors declare no conflict of interest related to the publication of this article.

For citation: Efimtseva E.A., Chelpanova T.I. Dietary fiber as modulators of gastrointestinal hormonal peptide secretion. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 20-35. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-20-35 (in Russian)

Литература/References

1. Barber T.M., Kabisch S., Pfeiffer A.F.H., Weickert M.O. The health benefits of dietary fibre. Nutrients. 2020; 12 (10): 3209. DOI: https://doi.org/10.3390/nu12103209 URL: www.mdpi.com/journal/nutrients

2. De Graaf C., Blom W.A.M., Smeets P.A.M., Stafleu A., Hendriks H.F.J. Biomarkers of satiation and satiety. Am J Clin Nutr. 2004; 79 (6): 946–61. DOI: https://doi.org/10.1093/ajcn/79.6.946

3. Benelam B. Satiation, satiety and their effects on eating behavior. Nutr Bull. 2009; 34 (2): 126–73. DOI: https://doi.org/10.1111/j.1467-3010.2009.01777.x

4. Abdalla M.M.I. Central and peripheral control of food intake. Endocr Regul. 2017; 51 (1): 52–70. DOI: https://doi.org/10.1515/enr-2017-0006

5. Prinz P., Stengel A. Control of food intake by gastrointestinal peptides: mechanisms of action and possible modulation in the treatment of obesity. J Neurogastroenterol Motil. 2017; 23 (2): 180–96. DOI: https://doi.org/10.5056/jnm16194

6. Gribble F.M., Reiman F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019; 15 (4): 226–37. DOI: https://doi.org/10.1038/s41574-019-0168-8

7. Müller T.D., Nogueiras R., Andermann M.L., et al. Ghrelin. Mol Metab. 2015; 4: 437–60.

8. Fernandez G., Cabral A., Cornejo M.P., Francesco P.N., Garsia-Romero G., Reynaldo M., et al. Des-acyl ghrelin directly targets the arcuate nucleus in a ghrelin receptor independent manner and impairs the orexigenic effect of ghrelin. J Neuroendocrinol. 2016; 28 (2): 12349. DOI: https://doi.org/10.1111/jne.12349

9. Schaeffer M., Langlet F., Lafont C., et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci USA. 2013; 110 (4): 1512–17. DOI: https://doi.org/10.1073/pnas.1212137110

10. Cummings D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav. 2006; 89 (1): 71–84. DOI: https://doi.org/10.1016/j.physbeh.2006.05.022

11. Mihalache L., Gherasim A., Niţă O., Unqureanu M.C., Padureanu S.S., Gavril R.S., et al. Effects of ghrelin in energy balance and body weight homeostasis. Hormones (Athens, Greece). 2016; 15 (2): 186–96. DOI: https://doi.org/10.14310/horm.2002.1672

12. Park H.K., Ahima R.S. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015; 64 (1): 24–34. DOI: https://doi.org/10.1016/j.metabol.2014.08.004

13. Zhou Y., Rui L. Leptin signaling and leptin resistance. Front Med. 2013; 7 (2): 207–22. DOI: https://doi.org/10.1007/s11684-013-0263-5

14. Ronveaux C.C., Tome D., Rabould H.E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr. 2015; 145 (4): 672–80. DOI: https://doi.org/10.3945/jn.114.206029

15. Parker H.E., Gribble F.M., Reiman F. The role of gut endocrine cells in control of metabolism and appetite. Exp Physiol. 2014; 99 (9): 1116–20. DOI: https://doi.org/10.1113/expphysiol.2014.079764

16. Gribble F.M., Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016; 78: 277–99. DOI: https://doi.org/10.1146/annurev-physiol-021115-105439

17. Dockray G.J. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol. 2013; 13 (6): 954–8. DOI: https://doi.org/10.1016/j.coph.2013.09.007

18. Ye L., Liddle R.A. Gastrointestinal hormones and the gut connectome. Curr Opin Endocrinol Diabetes Obes. 2017; 24 (1): 9–14. DOI: https://doi.org/10.1097/MED.0000000000000299

19. Li J., An R., Zhang Y., Li X., Wang S. Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am J Clin Nutr. 2012; 96 (2): 275–82. DOI: https://doi.org/10.3945/ajcn.112.037440

20. Dockrey G.J. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 2012; 19 (1): 8–12. DOI: https://doi.org/10.1097/MED.0b013e32834eb77d

21. Overduin J., Gibbs J., Cummings D.E., Reeve J.R. Jr. CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation. Peptides. 2014; 54: 71–80. DOI: https://doi.org/10.1016/j.peptides.2014.01.008

22. Sensfuss U., Kruse T., Skyggebjerg R.B., Uldam H.K., Vestergaard B., Huus K., et al. Structure-activity relationships and characterization of highly selective, long-acting, peptide-based cholecystokinin 1 receptor agonists. J Med Chem. 2019; 62 (3): 1407–19. DOI: https://doi.org/10.1021/acs.jmedchem.8b01558

23. Batterham R.L., Ffytche D.H., Rosenthal J.M., Zelaya F.O., Barker G.J., Withers D.J., et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007; 450 (7166): 106–9. DOI: https://doi.org/10.1038/nature06212

24. Wu Y., He H., Cheng Z., Bai Y., Ma X. The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis. Curr Protein Pept Sci. 2019; 20 (7): 750–8. DOI: https://doi.org/10.2174/1389203720666190125105401

25. Kjaergaard M., Salinas С.B.G., Rehfeld J.F., Secher A., Raun K., Wulf B.S. PYY (3-36) and exendin-4 reduce food intake and activate neuronal circuit in a synergistic manner in mice. Neuropeptides. 2019; 73: 89–95. DOI: https://doi.org/10.1016/j.npep.2018.11.004

26. Smith N.R., Hackett T.A., Galli A., Flynn C.R. GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019; 128: 94–105. DOI: https://doi.org/10.1016/j.neuint.2019.04.010

27. Näslund E., Hellström P.M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiol Behav. 2007; 92 (1–2): 256–62. DOI: https://doi.org/10.1016/j.physbeh.2007.05.017

28. Tolhurst G., Heffron H., Lam Y.S., Parker H.E., Habib A.M., Diakogiannaki E., et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012; 61 (2): 364–71. DOI: https://doi.org/10.2337/db11-1019

29. Astrup A., Rössner S., Van Gaal L., Rissanen A., Niskanen L., Al Hakim M., et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009; 374 (9701): 1606–16. DOI: https://doi.org/10.1016/S0140-6736(09)61375-1

30. De Silva A., Salem V., Long C.J., Makwana A., Newbould R.D., Rabiner E.A., et al. The gut hormones PYY3-36 and GLP-17–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011; 14 (5): 700–6. DOI: https://doi.org/10.1016/j.cmet.2011.09.010

31. Codex Alimentarius Commission. Thirty Second Session. Rome, 29 June – 4 July 2009.

32. Capuano E. The behavior of dietary fiber in gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr. 2017; 57 (16): 3543–64. DOI: https://doi.org/10.1080/10408398.2016.1180501

33. Wanders A.J., Jonathan M.C., van den Borne J.J.G.C., Mars M., Schols H.A., Feskens E.J.M., et al. The effects of bulking viscous and gel-forming dietary fibres on satiation. Br J Nutr. 2013; 109 (7): 1330–7. DOI: https://doi.org/10.1017/S0007114512003145

34. De Graaf C. Texture and satiation: the role of oro-sensory exposure time. Physiol Behav. 2012; 107 (4): 496–501. DOI: https://doi.org/10.1016/j.physbeh.2012.05.008

35. Flood-Obbagy J.E., Rolls B.J. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009; 52 (2): 416–22. DOI: https://doi.org/10.1016/j.appet.2008.12.001

36. Alexander C., Swanson K.S., Fahey G.C., Garleb K.A. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv Nutr. 2019; 10 (4): 576–89. DOI: https://doi.org/10.1093/advances/nmz004

37. Lopez-Cepero A.A., Palacios C. Association of the intestinal microbiota and obesity. PR Health Sci J. 2015; 34 (2): 60–4.

38. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007; 104 (3): 979–84. DOI: https://doi.org/10.1073/pnas.0605374104

39. DenBesten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54 (9): 2325–40. DOI: https://doi.org/10.1194/jlr.R036012

40. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016; 165 (6): 1332–45. DOI: https://doi.org/10.1016/j.cell.2016.05.041

41. Nohr M.K., Pedersen M.H., Gille A., Egerod K.L., Engelstoft M.S., Husted A.S., et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013; 154 (10): 3552–64. DOI: https://doi.org/10.1210/en.2013-1142

42. Larraufie P., Martin-Gallausiaux C., Lapaque N., Dore J., Gribble F.M., Reimann F., Blottiere H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018; 8 (1): 74. DOI: https://doi.org/10.1038/s41598-017-18259-0

43. Habib A.M., Richards P., Rogers G.J., Reimann F., Gribble F.M. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia. 2013; 56 (6): 1413–16. DOI: https://doi.org/10.1007/s00125-013-2887-z

44. Bauer P.V., Hamr S.C., Duca F.A. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016; 73 (4): 737–55. DOI: https://doi.org/10.1007/s00018-015-2083-z

45. Chambers E.S., Viardot A., Psichas A. Morrison D.J., Murphy K.G., Zac-Varghese S.E.R., et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015; 64 (11): 1744–54. DOI: https://doi.org/10.1136/gutjnl-2014-307913

46. Frost G., Sleeth M.L., Sahuri-Arisoylu M. Lizarbe B., Cerdan S., Brody L., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014; 5: 3611. DOI: https://doi.org/10.1038/ncomms4611

47. Beck E.J., Tapsell L.C., Batterham M.J., Tosh S.M., Huang X.-F. Increases in peptide Y-Y levels following oat beta-glucan ingestion are dose-dependent in overweight adults. Nutr Res. 2009; 29 (10): 705–9. DOI: https://doi.org/10.1016/j.nutres.2009.09.012

48. Beck E.J., Tosh S.M., Batterham M.J., Tapsell L.C., Huang X.-F. Oat β-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects. Mol Nutr Food Res. 2009; 53 (10): 1343–51. DOI: https://doi.org/10.1002/mnfr.200800343

49. Miyamoto J., Watanabe K., Taira S., Kasubuchi M., Li X., Irie J., et al. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One. 2018; 13 (4): e0196579. DOI: https://doi.org/10.1371/journal.pone.0196579

50. Huang X-F., Yu Y., Beck E.J., South T., Li Y., Batterham M.J., et al. Diet high in oat β-glucan activates the gut-hypothalamic (PYY3–36-NPY) axis and increases satiety in diet-induced obesity in mice. Mol Nutr Food Res. 2011; 55 (7): 1118–21. DOI: https://doi.org/10.1002/mnfr.201100095

51. Karhunen L.J., Juvonen K.R., Huotari A., Purhonen A.K., Herzig K.H. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008; 149 (1–3): 70–8. DOI: https://doi.org/10.1016/j.regpep.2007.10.008

52. Vitaglione P., Lumaga R.B., Stanzione A., Scalfi L., Fogliano V. beta-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite. 2009; 53 (3): 338–44. DOI: https://doi.org/10.1016/j.appet.2009.07.013

53. Lumaga R.B., Azzali D., Fogliano V., Scalfi L., Vitaglione P. Sugar and dietary fibre composition influence, by different hormonal response, the satiating capacity of a fruit-based and a β-glucan-enriched beverage. Food Funct. 2012; 3 (1): 67–75. DOI: https://doi.org/10.1039/c1fo10065c

54. Delzenne N.M., Cani P.D., Neyrinck A.M. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr. 2007; 137 (suppl 11): 2547S–51S. DOI: https://doi.org/10.1093/jn/137.11.2547S

55. Brooks L., Viardot A., Tsakmaki A., Stolarczyk E., Howard J.K., Cani P.D., et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab. 2017; 6 (1): 48–60. DOI: https://doi.org/10.1016/j.molmet.2016.10.011

56. Nilsson U., Nyman M. Short-chain fatty acid formation in the hindgut of rats fed oligosaccharides varying in monomeric composition, degree of polymerization and solubility. Br J Nutr. 2005; 94 (5): 705–13. DOI: https://doi.org/10.1079/bjn20051531

57. Cani P.D., Hoste S., Guiot Y., Delzenne N.M. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr. 2007; 98 (1): 32–7. DOI: https://doi.org/10.1017/S0007114507691648

58. Cani P.D., Dewever C., Delzenne N.M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr. 2004; 92 (3): 521–6.

59. Adam C.L., Williams P.A., Dalby M.J., Garden K., Thomson L.M., Richardson A.J., et al. Different types of soluble fermentable dietary decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab. 2014; 11: 36. DOI: https://doi.org/10.1186/1743-7075-11-36

60. Belobrajdic D.P., Jenkins C.L.D., Christophersen C.T., Bird A.R. Cereal fructan extracts alter intestinal fermentation to reduce adiposity and increase mineral retention compared to oligofructose. Eur J Nutr. 2019; 58 (7): 2811–21. DOI: https://doi.org/10.1007/s00394-018-1830-y

61. Verhoef S.P.M, Meyer D., Westerterp K.R. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake. Br J Nutr. 2011; 106 (11): 1757–62. DOI: https://doi.org/10.1017/S0007114511002194

62. Parnell J.A., Reimer R.A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009; 89 (6): 1751–59. DOI: https://doi.org/10.3945/ajcn.2009.27465

63. Daud N.M., Ismail N.A., Thomas E.L., Fitzpatrick J.A., Bell J.D., Swann J.R., et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity (Silver Spring). 2014; 22 (6): 1430–8. DOI: https://doi.org/10.1002/oby.20754

64. Pedersen C., Lefevre S., Peters V., Patterson M., Ghatei M.A., Morgan L.M., et al. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake. A dose-escalation study. Appetite. 2013; 66: 44–53. DOI: https://doi.org/10.1016/j.appet.2013.02.017

65. Savastano D.M., Hodge R.J., Nunez D.J., Walker A., Kapikian R. Effect of two dietary fibers on satiety and glycemic parameters: a randomized, double-blind, placebo-controlled, exploratory study. Nutr J. 2014; 13: 45. DOI: https://doi.org/10.1186/1475-2891-13-45

66. Jiang T., Gao X., Wu C., Tian A., Lei Q., Bi J., et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients. 2016; 8 (3): 126. DOI: https://doi.org/10.3390/nu8030126

67. Adam C.L., Gratz S.W., Peinado D.I., Thomson L.M., Garden K.E., Williams P.A., et al. Effects of dietary fibre (pectin) and/or increased protein (casein or pea) on satiety, body weight, adiposity and caecal fermentation in high fat diet-induced obese rats. PLoS One. 2016; 11 (5): е0155871. DOI: https://doi.org/10.1371/journal.pone.0155871

68. Adam C.L., Williams P.A., Garden K.E., Thomson L.M., Ross. A.W. Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS One. 2015; 10 (1): e0115438 https://doi.org/10.1371/journal.pone.0115438

69. Shimada R., Yoshimura M., Murakami K., Ebihara K. Plasma concentrations of GLP-1 and PYY in rats fed dietary fiber depend on the fermentability of dietary fiber and respond to an altered diet. Int J Clin Nutr Diet. 2015; 1 (1): 103. DOI: https://doi.org/10.15344/2456-8171/2015/103

70. Rao T.P. Role of guar fiber in appetite control. Physiol Behav. 2016; 164 (pt A): 277–83. DOI: https://doi.org/10.1016/j.physbeh.2016.06.014

71. Wang Z.Q., Zuberi A.R., Zhang X.H. Macgowan J., Qin J., Ye X., et al. Effects of dietary fibers on weight gain, carbohydrate metabolism and gastric ghrelin gene expression in mice fed a high-fat diet. Metabolism. 2007; 56 (12): 1635–42. DOI: https://doi.org/10.1016/j.metabol.2007.07.004

72. Karhunen L.J., Juvonen K.R., Flander S.M., Liukkonen K.-H., Lähteenmäki L., Siloaho M., et al. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr. 2010; 140 (4): 737–44. DOI: https://doi.org/10.3945/jn.109.115436

73. Burton-Freeman B., Liyanage D., Rahman S., Edirisinghe I. Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre- and postmenopausal women. Nutr Healthy Aging. 2017; 4 (2): 157–68. DOI: https://doi.org/10.3233/NHA-160018

74. DeMartino P., Cockburn D.W. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol. 2020; 61: 66–71. DOI: https://doi.org/10.1016/j.copbio.2019.10.008

75. Zhou J., Martin R.J., Raggio A.M., Chen L., McCutcheon K., Keenan M.J. The importance of GLP-1 and PYY in resistant starch’s effect on body fat in mice. Mol Nutr Food Res. 2015; 59 (5): 1000–3. DOI: https://doi.org/10.1002/mnfr.201400904

76. So P.-W., Yu W.-S, Kuo Y.-T., Wasserfall C., Goldstone A.P., Bell J.D., et al. Impact of resistant starch on body fat patterning and central appetite regulation. PLoS One. 2007; 2 (12): e1309. DOI: https://doi.org/10.1371/journal.pone.0001309

77. Maziarz M.P., Preisendanz S., Juma S., Imrhan V., Prasad C., Vijayagopal P. Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: a randomized-controlled trial. Nutr J. 2017; 16 (1): 14. DOI: https://doi.org/10.1186/s12937-017-0235-8

78. Sandberg J.C., Björck I.M.E., Nilsson A.C. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutr J. 2017; 16 (1): 25. DOI: https://doi.org/10.1186/s12937-017-0246-5

79. Odunsi S.T., Vázquez-Roque M.I., Camilleri M., Papathanasopoulos A., Clark M.M., Wodrich L., et al. Effect of alginate on satiation, appetite, gastric function and selected gut satiety hormones in overweight and obesity. Obesity. 2010; 18 (8): 1579–84. DOI: https://doi.org/10.1038/oby.2009.421

80. Jensen M.G., Knudsen J.C., Viereck N., Kristensen M., Astrup A. Functionality of alginate based supplements for application in human appetite regulation. Food Chem. 2012; 132 (2): 823–29. DOI: https://doi.org/10.1016/j.foodchem.2011.11.042

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»