To the content
4 . 2021

Intestinal microbiote of athletes

Abstract

The intestinal microbiota, due to new data on its functions obtained in the last decade, has become a new target point of influence on the organism. However, nowadays knowledge about the possible impact of physical activity and sports on the composition of the gut microbiota and, as a result, on the organism is limited.

The aim of this review was to summarize current knowledge about the gut microbiota of healthy people with different levels of physical activity (from athletes to physically inactive people), and to identify patterns in the composition of the microbiota of various surveyed groups.

Material and methods. A systematic search was carried out in electronic databases including EMBASE, MEDLINE, Web of Science, Google Scholar and eLIBRA RY. The search process was carried out using keywords and logical operators. We included the following studies in our review: a) crossover studies comparing the gut microbiome of subjects with different physical activity; b) studies involving healthy adult women and men (18-45 years old); c) studies written in English and Russian. We excluded studies containing dietary changes, consumption of probiotics or prebiotics, and studies of physical activity in sick people.

Results and discussion. Total 743 articles were received, of which 14 articles fully met the search criteria, and 101 articles partially corresponded. An analysis of the data from these studies indicated noticeable differences in the microbiota between athletes and people leading an sedentary lifestyle: the athletes had a greater α-diversity of the microbiota, while the level of microorganisms of the phylum Bacteroidetes was reduced; Akkermansiaceae and Faecalibacterium bacteria are elevated in athletes and people with active lifestyles. Different levels of physical activity in physically active people according to the levels of cardiorespiratory endurance did not affect the level of α- and β-diversity. When analyzing the effect of loads on the microbiota in various sports disciplines and skill levels, a connection was found with an increase in α-diversity in professionals and highly qualified athletes, with the relative content of series of bacteria (Methanobrevibacter smithii in professional cyclists; Parabacteroides, Phascolarctobacterium, Oscillibacter, Bilophila, Megasphaera in athletes of high martial arts qualifications of wushu; Eubacterium rectale, Polynucleobacter needarius, Faecalibacterium prausnitzii, Bacteroides vulgatus, Gordonibacter massiliensis in athletes of international level of various sports), and certain genera of bacteria have been identified (Parabacteroides, Phascolarctobacterium, Besilibacterium).

Conclusion. The data obtained indicate a higher relative proportion of microbiota effective members, which are involved in the fermentation of complex polysaccharides and the production of short-chain fatty acids such as Faecalibacterium prausnitzii, Eubacterium hallii, Phascolarctobacterium, Eubacterium rectale, and Methanobrevibacter smithii, which increases the fermentation efficiency of many bacterial taxa in the gut by using hydrogen gas (H2) and formate to reduce carbon dioxide (CO2) to methane. There is a need to study other members of the microecological community, leading to a better understanding of the adaptation of the gut microbiota to levels of physical activity and its potentially positive effects on metabolism and endurance.

Keywords:exercise, physical activity, athletes, intestinal microbiota

Funding. The study was not sponsored.

Conflict of interest. The authors declare no conflict of interest.

For citation: Bragina T.V., Elizarova E.V., Sheveleva S.A. Intestinal microbiote of athletes. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 36-52. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-36-52 (in Russian)

References

1. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21: 8787–803. DOI: https://doi.org/10.3748/wjg.v21.i29.8787

2. Wilson A.S., Koller K.R., Ramaboli M.C., Nesengani L.T., Ocvirk S., Chen C., et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020; 65: 723–40. DOI: https://doi.org/10.1007/s10620-020-06112-w

3. Moszak M., Szulińska M., Bogdański P. You are what you eat – the relationship between diet, microbiota, and metabolic disorders – a review. Nutrients 2020; 12: 1096. DOI: https://doi.org/10.3390/nu12041096

4. Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.-J., Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020; 12: 12020381. DOI: https://doi.org/10.3390/nu12020381

5. Matenchuk B.A., Mandhane P.J., Kozyrskyj A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020; 53: 101340. DOI: https://doi.org/10.1016/j.smrv.2020.101340

6. Marttinen M., Ala-Jaakkola R., Laitila A., Lehtinen M.J. Gut microbiota, probiotics and physical performance in athletes and physically active individuals. Nutrients. 2020; 12: 1–39. DOI: https://doi.org/10.3390/nu12102936

7. Mu C., Zhu W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl Microbiol Biotechnol. 2019; 103: 9277–85. DOI: https://doi.org/10.1007/s00253-019-10165-x

8. Rothschild D., Weissbrod O., Barkan E., Kurilshikov A., Korem T., Zeevi D., et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018; 555: 210–5. DOI: https://doi.org/10.1038/nature25973

9. Scepanovic P., Hodel F., Mondot S., Partula V., Byrd A., Hammer C., et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 2019; 7: 130. DOI: https://doi.org/10.1186/s40168-019-0747-x

10. Derrien M., Alvarez A.-S., de Vos W.M. The gut microbiota in the first decade of life. Trends Microbiol. 2019; 27: 997–1010. DOI: https://doi.org/10.1016/j.tim.2019.08.001

11. Holmes E., Li J.V., Marchesi J.R., Nicholson J.K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012; 16: 559–64. DOI: https://doi.org/10.1016/j.cmet.2012.10.007

12. Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018; 11: 1–10. https://doi.org/10.1007/s12328-017-0813-5

13. Moreno-Indias I., Cardona F., Tinahones F.J., Queipo-Ortuño M.I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014; 5: 190. DOI: https://doi.org/10.3389/fmicb.2014.00190

14. Verhaar B.J.H., Prodan A., Nieuwdorp M., Muller M. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients. 2020; 12: 12102982. DOI: https://doi.org/10.3390/nu12102982

15. Sabit H., Cevik E., Tombuloglu H. Colorectal cancer: the epigenetic role of microbiome. World J Clin Cases. 2019; 7: 3683–97. DOI: https://doi.org/10.12998/wjcc.v7.i22.3683

16. Sheveleva S.A., Kuvaeva I.B., Efimochkina N.R., Markova Yu.M., Prosyannikov M.Yu. The intestinal microbiome: from the standard of the norm to the pathology. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 35–51. DOI: https://doi.org/10.24411/0042-8833-2020-10040 (in Russian)

17. Kulecka M., Fraczek B., Mikula M., Zeber-Lubecka N., Karczmarski J., Paziewska A., et al. The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut Microbes. 2020; 11: 1374–84. DOI: https://doi.org/10.1080/19490976.2020.1758009

18. Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489: 242–9. DOI: https://doi.org/10.1038/nature11552

19. Zeng M.Y., Inohara N., Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017; 10: 18–26. DOI: https://doi.org/10.1038/mi.2016.75

20. Indiani C.M.D.S.P., Rizzardi K.F., Castelo P.M., Ferraz L.F.C., Darrieux M., Parisotto T.M. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Child Obes. 2018; 14: 501–9. DOI: https://doi.org/10.1089/chi.2018.0040

21. Magne F., Gotteland M., Gauthier L., Zazueta A., Pesoa S., Navarrete P., et al. The Firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020; 12: 12051474. DOI: https://doi.org/10.3390/nu12051474

22. Plovier H., Cani P.D. Microbial impact on host metabolism: opportunities for novel treatments of nutritional disorders? Microbiol Spectr. 2017; 5. DOI: https://doi.org/10.1128/microbiolspec.BAD-0002-2016

23. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007; 104: 979–84. DOI: https://doi.org/10.1073/pnas.0605374104

24. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444: 1027. DOI: https://doi.org/10.1038/nature05414

25. Motiani K.K., Collado M.C., Eskelinen J.-J., Virtanen K.A., Löyttyniemi E., Salminen S., et al. Exercise training modulates gut microbiota profile and improves endotoxemia. Med Sci Sports Exerc. 2020; 52: 94–104. DOI: https://doi.org/10.1249/MSS.0000000000002112

26. Álvarez J., Fernández Real J.M., Guarner F., Gueimonde M., Rodríguez J.M., Saenz de Pipaon M., et al. Gut microbes and health. Gastroenterol Hepatol. 2021. DOI: https://doi.org/10.1016/j.gastrohep.2021.01.009

27. Evans C.C., LePard K.J., Kwak J.W., Stancukas M.C., Laskowski S., Dougherty J., et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014; 9 (3): e92193. DOI: https://doi.org/10.1371/journal.pone.0092193

28. Brandt N., Kotowska D., Kristensen C.M., Olesen J., Lützhoft D.O., Halling J.F., et al. The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiol Rep. 2018; 6: e13881. DOI: https://doi.org/10.14814/phy2.13881

29. McCabe L.R., Irwin R., Tekalur A., Evans C., Schepper J.D., Parameswaran N., et al. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019; 118: 20–31. DOI: https://doi.org/10.1016/j.bone.2018.03.024

30. Nagano T., Yano H. Effect of dietary cellulose nanofiber and exercise on obesity and gut microbiota in mice fed a high-fat-diet. Biosci Biotechnol Biochem. 2020; 84: 613–20. DOI: https://doi.org/10.1080/09168451.2019.1690975

31. Yu C., Liu S., Chen L., Shen J., Niu Y., Wang T., et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J Endocrinol. 2019; 243: 125–35. DOI: https://doi.org/10.1530/JOE-19-0122

32. Hsu Y.J., Chiu C.C., Li Y.P., Huang W.C., Huang Y.T., Huang C.C., et al. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015; 29: 552–8.

33. Kim D., Kang H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J. 2019; 33: 5772–81. DOI: https://doi.org/10.1096/fj.201802481R

34. Allen J.M., Berg Miller M.E., Pence B.D., Whitlock K., Nehra V., Gaskins H.R., et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol. 2015; 118: 1059–66. DOI: https://doi.org/10.1152/japplphysiol.01077.2014

35. Denou E., Marcinko K., Surette M.G., Steinberg G.R., Schertzer J.D. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016; 310: E982–93. DOI: https://doi.org/10.1152/ajpendo.00537.2015

36. Okamoto T., Morino K., Ugi S., Nakagawa F., Lemecha M., Ida S., et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019; 316: E956–66. DOI: https://doi.org/10.1152/ajpendo.00510.2018

37. Yuan X., Xu S., Huang H., Liang J., Wu Y., Li C., et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand J Med Sci Sports. 2018; 28: 1541–51. DOI: https://doi.org/10.1111/sms.13060

38. Houghton D., Stewart C.J., Stamp C., Nelson A., Aj Ami N.J., Petrosino J.F., et al. Impact of age-related mitochondrial dysfunction and exercise on intestinal microbiota composition. J Gerontol A Biol Sci Med Sci. 2018; 73: 571–8. DOI: https://doi.org/10.1093/gerona/glx197

39. Muka T., Glisic M., Milic J., Verhoog S., Bohlius J., Bramer W., et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. 2020; 35: 49–60. DOI: https://doi.org/10.1007/s10654-019-00576-5

40. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63: 1913–20. DOI: https://doi.org/10.1136/gutjnl-2013-306541

41. Barton W., Penney N.C., Cronin O., Garcia-Perez I., Molloy M.G., Holmes E., et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018; 67: 625–33. DOI: https://doi.org/10.1136/gutjnl-2016-313627

42. Estaki M., Pither J., Baumeister P., Little J.P., Gill S.K., Ghosh S., et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016; 4: 42. DOI: https://doi.org/10.1186/s40168-016-0189-7

43. Bressa C., Bailén-Andrino M., Pérez-Santiago J., González-Soltero R., Pérez M., Montalvo-Lominchar M.G., et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017; 12: e0171352. DOI: https://doi.org/10.1371/journal.pone.0171352

44. Petersen L.M., Bautista E.J., Nguyen H., Hanson B.M., Chen L., Lek S.H., et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017; 5: 98. DOI: https://doi.org/10.1186/s40168-017-0320-4

45. Yang Y., Shi Y., Wiklund P., Tan X., Wu N., Zhang X., et al. The association between cardiorespiratory fitness and gut microbiota composition in premenopausal women. Nutrients. 2017; 9: 792. DOI: https://doi.org/10.3390/nu9080792

46. Whisner C.M., Maldonado J., Dente B., Krajmalnik-Brown R., Bruening M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiol. 2018; 18: 210. DOI: https://doi.org/10.1186/s12866-018-1362-x

47. Durk R.P., Castillo E., Márquez-Magaña L., Grosicki G.J., Bolter N.D., Lee C.M., et al. Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults. Int J Sport Nutr Exerc Metab. 2019; 29: 249–53. DOI: https://doi.org/10.1123/ijsnem.2018-0024

48. Jang L.-G., Choi G., Kim S.-W., Kim B.-Y., Lee S., Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019; 16: 21. DOI: https://doi.org/10.1186/s12970-019-0290-y

49. Liang R., Zhang S., Peng X., Yang W., Xu Y., Wu P., et al. Characteristics of the gut microbiota in professional martial arts athletes: a comparison between different competition levels. PLoS One. 2019; 14: e0226240. DOI: https://doi.org/10.1371/journal.pone.0226240

50. O’Donovan C.M., Madigan S.M., Garcia-Perez I., Rankin A., O’ Sullivan O., Cotter P.D. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport. 2020; 23: 63–8. DOI: https://doi.org/10.1016/j.jsams.2019.08.290

51. Bielik V., Hric I., Baláž V., Penesová A., Vávrová S., Grones J., et al. Gut microbiota diversity in lean athletes is associated with positive energy balance. Ann Nutr Metab. 2020; 76: 242–50. DOI: https://doi.org/10.1159/000509833

52. Han M., Yang K., Yang P., Zhong C., Chen C., Wang S., et al. Stratification of athletes’ gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut Microbes. 2020; 12: 1–18. DOI: https://doi.org/10.1080/19490976.2020.1842991

53. Mitchell J.H., Haskell W., Snell P., Van Camp S.P. Task Force 8: classification of sports. J Am Coll Cardiol. 2005; 45: 1364–7. DOI: https://doi.org/10.1016/j.jacc.2005.02.015

54. Derrien M., Belzer C., de Vos W.M. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017; 106: 171–81. DOI: https://doi.org/10.1016/j.micpath.2016.02.005

55. Ottman N., Geerlings S.Y., Aalvink S., de Vos W.M., Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017; 31: 637–42. DOI: https://doi.org/10.1016/j.bpg.2017.10.001

56. Verhoog S., Taneri P.E., Roa Díaz Z.M., Marques-Vidal P., Troup J.P., Bally L., et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients. 2019; 11: 1565. DOI: https://doi.org/10.3390/nu11071565

57. Macchione I.G., Lopetuso L.R., Ianiro G., Napoli M., Gibiino G., Rizzatti G., et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci. 2019; 23: 8075–83. DOI: https://doi.org/10.26355/eurrev_201909_19024

58. Leylabadlo H.E., Ghotaslou R., Feizabadi M.M., Farajnia S., Moaddab S.Y., Ganbarov K., et al. The critical role of Faecalibacterium prausnitzii in human health: an overview. Microb Pathog. 2020; 149: 104344. DOI: https://doi.org/10.1016/j.micpath.2020.104344

59. Lopez-Siles M., Enrich-Capó N., Aldeguer X., Sabat-Mir M., Duncan S.H., Garcia-Gil L.J., et al. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect Microbiol. 2018; 8: 281. DOI: https://doi.org/10.3389/fcimb.2018.00281

60. Fu X., Liu Z., Zhu C., Mou H., Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019; 59: S130–52. DOI: https://doi.org/10.1080/10408398.2018.1542587

61. Louis P., Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009; 294: 1–8. DOI: https://doi.org/10.1111/j.1574-6968.2009.01514.x

62. Ticinesi A., Mancabelli L., Tagliaferri S., Nouvenne A., Milani C., Del Rio D., et al. The Gut-muscle axis in older subjects with low muscle mass and performance: a proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing. Int J Mol Sci. 2020; 21: 8946. DOI: https://doi.org/10.3390/ijms21238946

63. Ticinesi A., Tana C., Nouvenne A. The intestinal microbiome and its relevance for functionality in older persons. Curr Opin Clin Nutr Metab Care. 2019; 22: 4–12. DOI: https://doi.org/10.1097/MCO.0000000000000521

64. Ticinesi A., Nouvenne A., Cerundolo N., Catania P., Prati B., Tana C., et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients. 2019; 11: 1633. DOI: https://doi.org/10.3390/nu11071633

65. Nakamura N., Lin H.C., McSweeney C.S., Mackie R.I., Gaskins H.R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol. 2010; 1: 363–95. DOI: https://doi.org/10.1146/annurev.food.102308.124101

66. Samuel B.S., Hansen E.E., Manchester J.K., Coutinho P.M., Henrissat B., Fulton R., et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA. 2007; 104: 10 643–8. DOI: https://doi.org/10.1073/pnas.0704189104

67. Samuel B.S., Gordon J.I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA. 2006; 103: 10 011–6. DOI: https://doi.org/10.1073/pnas.0602187103

68. Wu L., Zeng T., Zinellu A., Rubino S., Kelvin D.J., Carru C. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems. 2019; 4: e00325-19. DOI: https://doi.org/10.1128/mSystems.00325-19

69. Engels C., Ruscheweyh H.-J., Beerenwinkel N., Lacroix C., Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016; 7: 713. DOI: https://doi.org/10.3389/fmicb.2016.00713

70. Bunesova V., Lacroix C., Schwab C. Mucin cross-feeding of infant Bifidobacteria and Eubacterium hallii. Microb Ecol. 2018; 75: 228–38. DOI: https://doi.org/10.1007/s00248-017-1037-4

71. Fekry M.I., Engels C., Zhang J., Schwab C., Lacroix C., Sturla S.J., et al. The strict anaerobic gut microbe Eubacterium hallii transforms the carcinogenic dietary heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Environ Microbiol Rep. 2016; 8: 201–9. DOI: https://doi.org/10.1111/1758-2229.12369

72. Bennett G.N., San K.Y. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol. 2001; 55: 1–9. DOI: https://doi.org/10.1007/s002530000476

73. Liu Z., Liu H.-Y., Zhou H., Zhan Q., Lai W., Zeng Q., et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol. 2017; 8: 1687. DOI: https://doi.org/10.3389/fmicb.2017.01687

74. Matziouridou C., Marungruang N., Nguyen T.D., Nyman M., Fak F. Lingonberries reduce atherosclerosis in Apoe(-/-) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res. 2016; 60: 1150–60. DOI: https://doi.org/10.1002/mnfr.201500738

75. Haro C., Montes-Borrego M., Rangel-Zúñiga O.A., Alcalá-Díaz J.F., Gómez-Delgado F., Pérez-Martínez P., et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016; 101: 233–42. DOI: https://doi.org/10.1210/jc.2015-3351

76. Li L., Su Q., Xie B., Duan L., Zhao W., Hu D., et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system. Neurogastroenterol Motil. 2016; 28: 1233–40. DOI: https://doi.org/10.1111/nmo.12822

77. Duncan S.H., Flint H.J. Proposal of a neotype strain (A1-86) for Eubacterium rectale. Request for an opinion. Int J Syst Evol Microbiol. 2008; 58: 1735–6. DOI: https://doi.org/10.1099/ijs.0.2008/004580-0

78. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de Los Reyes-Gavilán C.G., Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016; 7: 185. DOI: https://doi.org/10.3389/fmicb.2016.00185

79. Kabeerdoss J., Jayakanthan P., Pugazhendhi S., Ramakrishna B.S. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res. 2015; 142: 23–32. DOI: https://doi.org/10.4103/0971-5916.162091

80. Fite A., Macfarlane S., Furrie E., Bahrami B., Cummings J.H., Steinke D.T., et al. Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient age and disease severity and duration. J Clin Microbiol. 2013; 51: 849–56. DOI: https://doi.org/10.1128/JCM.02574-12

81. Yoshida N., Emoto T., Yamashita T., Watanabe H., Hayashi T., Tabata T., et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018; 138: 2486–98. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.033714

82. Ngom I.I., Hasni I., Lo C.I., Traore S.I., Fontanini A., Raoult D., et al. Taxono-genomics and description of Gordonibacter massiliensis sp. nov., a new bacterium isolated from stool of healthy patient. New Microbes New Infect. 2020; 33: 100624. DOI: https://doi.org/10.1016/j.nmni.2019.100624

83. Selma M.V., Tomás-Barberán F.A., Beltrán D., García-Villalba R., Espín J.C. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol. 2014; 64: 2346–52. DOI: https://doi.org/10.1099/ijs.0.055095-0

84. Rodriguez J., Pierre N., Naslain D., Bontemps F., Ferreira D., Priem F., et al. Urolithin B, a newly identified regulator of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2017; 8: 583–97. DOI: https://doi.org/10.1002/jcsm.12190

85. Toney A.M., Fox D., Chaidez V., Ramer-Tait A.E., Chung S. Immunomodulatory role of urolithin a on metabolic diseases. Biomedicines. 2021; 9: 192. DOI: https://doi.org/10.3390/biomedicines9020192

86. Allen J.M., Mailing L.J., Niemiro G.M., Moore R., Cook M.D., White B.A., et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018; 50: 747–57. DOI: https://doi.org/10.1249/MSS.0000000000001495

87. Munukka E., Ahtiainen J.P., Puigbó P., Jalkanen S., Pahkala K., Keskitalo A., et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front Microbiol. 2018; 9: 2323. DOI: https://doi.org/10.3389/fmicb.2018.02323

88. Morita E., Yokoyama H., Imai D., Takeda R., Ota A., Kawai E., et al. Aerobic exercise training with brisk walking increases intestinal bacteroides in healthy elderly women. Nutrients. 2019; 11: 868. DOI: https://doi.org/10.3390/nu11040868

89. Nay K., Jollet M., Goustard B., Baati N., Vernus B., Pontones M., et al. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis. Am J Physiol Endocrinol Metab. 2019; 317: E158–71. DOI: https://doi.org/10.1152/ajpendo.00521.2018

90. Okamoto T., Morino K., Ugi S., Nakagawa F., Lemecha M., Ida S., et al. Gut bacteria are critical for optimal muscle function: a potential link with glucose homeosta intestinal acetate production. Am J Physiol Endocrinol Metab. 2019; 316: E956–66. DOI: https://doi.org/10.1152/ajpendo.00510.2018

91. Singh V., Chassaing B., Zhang L., San Yeoh B., Xiao X., Kumar M., et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 2015; 22: 983–96. DOI: https://doi.org/10.1016/j.cmet.2015.09.028

92. De Vadder F., Kovatcheva-Datchary P., Zitoun C., Duchampt A., Bäckhed F., Mithieux G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 2016; 24: 151–7. DOI: https://doi.org/10.1016/j.cmet.2016.06.013

93. Cani P.D., Van Hul M., Lefort C., Depommier C., Rastelli M., Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019; 1: 34–46. DOI: https://doi.org/10.1038/s42255-018-0017-4

94. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015; 277: 32–48. DOI: https://doi.org/10.1016/j.bbr.2014.07.027

95. Frampton J., Murphy K.G., Frost G., Chambers E.S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020; 2: 840–8. DOI: https://doi.org/10.1038/s42255-020-0188-7

96. van de Wouw M., Boehme M., Lyte J.M., Wiley N., Strain C., O’Sullivan O., et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018; 596: 4923–44. DOI: https://doi.org/10.1113/JP276431

97. LeBlanc J.G., Chain F., Martín R., Bermúdez-Humarán L.G., Courau S., Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017; 16: 79. DOI: https://doi.org/10.1186/s12934-017-0691-z

98. Scheiman J., Luber J.M., Chavkin T.A., MacDonald T., Tung A., Pham L.-D., et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019; 25: 1104–9. DOI: https://doi.org/10.1038/s41591-019-0485-4

99. Boets E., Gomand S.V., Deroover L., Preston T., Vermeulen K., De Preter V., et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol. 2017; 595: 541–55. DOI: https://doi.org/10.1113/JP272613

100. Zhao X., Zhang Z., Hu B., Huang W., Yuan C., Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018; 9: 765. DOI: https://doi.org/10.3389/fmicb.2018.00765

101. Cronin O., Barton W., Skuse P., Penney N.C., Garcia-Perez I., Murphy E.F., et al. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems. 2018; 3: e00044-18. DOI: https://doi.org/10.1128/mSystems.00044-18

102. Tang R., Harasymowicz N.S., Wu C.-L., Collins K.H., Choi Y.-R., Oswald S.J., et al. Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet-induced obesity. Sci Adv. 2020; 6: eaaz7492. DOI: https://doi.org/10.1126/sciadv.aaz7492

103. Rakoff-Nahoum S., Foster K.R., Comstock L.E. The evolution of cooperation within the gut microbiota. Nature. 2016; 533: 255–9. DOI: https://doi.org/10.1038/nature17626

104. Bautista L.E., Herrán O.F., Pryer J.A. Development and simulated validation of a food-frequency questionnaire for the Colombian population. Public Health Nutr. 2005; 8: 181–8. DOI: https://doi.org/10.1079/phn2004672

105. Ortega R.M., Pérez-Rodrigo C., López-Sobaler A.M. Dietary assessment methods: dietary records. Nutr Hosp. 2015; 31 (suppl 3): 38–45. DOI: https://doi.org/10.3305/nh.2015.31.sup3.8749

106. Wolters M., Ahrens J., Romaní-Pérez M., Watkins C., Sanz Y., Benítez-Páez A., et al. Dietary fat, the gut microbiota, and metabolic health — a systematic review conducted within the MyNewGut project. Clin Nutr. 2019; 38: 2504–20. DOI: https://doi.org/10.1016/j.clnu.2018.12.024

107. Möller G.B., Da Cunha Goulart M.J.V., Nicoletto B.B., Alves F.D., Schneider C.D. Supplementation of probiotics and its effects on physically active individuals and athletes: systematic review. Int J Sport Nutr Exerc Metab. 2019; 29: 481–92. DOI: https://doi.org/10.1123/ijsnem.2018-0227

108. Miles M.P. Probiotics and gut health in athletes. Curr Nutr Rep. 2020; 9: 129–36. DOI: https://doi.org/10.1007/s13668-020-00316-2

109. Zinöcker M.K., Lindseth I.A. The Western diet-microbiome-host interaction and its role in metabolic disease. Nutrients. 2018; 10: 365. DOI: https://doi.org/10.3390/nu10030365

110. O’Keefe S.J.D., Li J.V., Lahti L., Ou J., Carbonero F., Mohammed K., et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015; 6: 1–14. DOI: https://doi.org/10.1038/ncomms7342

111. Donati Zeppa S., Agostini D., Gervasi M., Annibalini G., Amatori S., Ferrini F., et al. Mutual interactions among exercise, sport supplements and microbiota. Nutrients. 2019; 12: 17. DOI: https://doi.org/10.3390/nu12010017

112. Zeppa S.D., Agostini D., Gervasi M., Annibalini G., Amatori S., Ferrini F., et al. Mutual interactions among exercise, sport supplements and microbiota. Nutrients. 2020; 12: 17. DOI: https://doi.org/10.3390/nu12010017

113. Huang W.-C., Hsu Y.-J., Huang C.-C., Liu H.-C., Lee M.-C. Exercise training combined with bifidobacterium longum OLP-01 supplementation improves exercise physiological adaption and performance. Nutrients. 2020; 12: 1145. DOI: https://doi.org/10.3390/nu12041145

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»