To the content
4 . 2021

Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children

Abstract

The issues of therapy and prevention of asthma in children do not lose their relevance. The increase in the prevalence of allergic diseases and asthma is associated, among other things, with a relative deficit in the microbial load and changes in the microbiota due to improved hygiene and living conditions. The microbiota plays an important role in the formation and functioning of the immune system. Contact with microorganisms contributes to the normal maturation of T-regulatory cells, preventing an inadequate immune response in both the Th1- and Th2-pathways.

Aim - literature review on the possibilities of gut microbiota correction for prevention and treatment of asthma in children.

Results. In children with an increased risk of asthma, abnormalities in the intestinal microbiota are observed in the first year of life: there is a relative deficiency of Lachnospira, Veillonella, Faecalibacterium and Rothia. The imbalance of the intestinal microbiota is accompanied by a decrease in the synthesis of short-chain fatty acids (butyrate, acetate, propionate), which, among other things, play the role of signaling molecules. Gut microbiota maturation is delayed in children at risk of asthma. It is not clear whether the diversity of the gut microbiota is associated with the risk of developing asthma. Maintenance of normal gut microbiota or correction of its disturbances in early life is a possible approach to the prevention and treatment of asthma. Breastfeeding, vaginal delivery, constant contact with farm animals or dogs since an early age, limiting antibiotic use in the first year of life, a varied diet with the inclusion of fiber-rich foods, and the use of pre-and probiotics can help. However, the implementation of these recommendations in practice is difficult. Further research is required to identify specific prophylactic stimuli reproducible in the urban environment. The conflicting results of studies in this area, in particular, the effectiveness of probiotics in the prevention of asthma, require large-scale prospective cohort studies with a long follow-up period and careful selection of probiotic strains and their combinations. Now, there are no definitive recommendations on the use of probiotics for the prevention of allergic diseases.

Conclusion. The possibilities of correcting the gut microbiota for the prevention and treatment of asthma are actively studied, but at present, there are many contradictions and unresolved issues.

Keywords:microbiota, gut, asthma, allergies, children, probiotics

Funding. The study did not have sponsorship.

Conflict of interest. The authors declare no conflict of interest.

For citation: Ozerskaia I.V., Geppe N.A., Romantseva E.V., Yablokova E.A. Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 74-83. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-74-83 (in Russian)

References

1. Adami A.J., Bracken S.J. Breathing better through bugs: asthma and the microbiome. Yale J Biol Med. 2016; 89 (3): 309–24.

2. Loverdos K., Bellos G., Kokolatou L., Vasileiadis I., Giamarellos E., Pecchiari M., et al. Lung microbiome in asthma: current perspectives. J Clin Med. 2019; 8 (11): 1967. DOI: https://doi.org/10.3390/jcm8111967

3. Abdrakhmanova S.T., Abelevich M.M., Aliskandiev A.M., Arkhipov V.V., Astaf’eva N.G., Asherova I.K., et al. National program «Bronchial asthma in children. Treatment strategy and prevention». 5th ed., revised and enlarged. Moscow: Original-maket, 2017: 160 p. ISBN: 978-5-9909505-3-5. (in Russian)

4. Strachan D.P. Hay fever, hygiene, and household size. Br Med J. 1989; 299 (6710): 1259–60. DOI: https://doi.org/10.1136/bmj.299.6710.1259

5. Rook G.A., Brunet L.R. Microbes, immunoregulation, and the gut. Gut. 2005; 54 (3): 317–20. DOI: https://doi.org/10.1136/gut.2004.053785

6. Rook G.A.W. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology. 2009; 126 (1): 3–11. DOI: https://doi.org/10.1111/j.1365-2567.2008.03007.x

7. Rowan-Nash A.D., Korry B. J, Mylonakis E., Belenky P. Cross-domain and viral interactions in the microbiome. Microbiol Mol Biol Rev. 2019; 83 (1): e00044-18. DOI: https://doi.org/10.1128/MMBR.00044-18

8. Lejeunea S., Deschildrea A., Le Rouzic O. Engelmann I., Dessein R., Pichavant M., et al. Childhood asthma heterogeneity at the era of precision medicine: mmodulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol. 2020; 179: 1140–6. DOI: https://doi.org/10.1016/j.bcp.2020.114046

9. Chung K.F. Airway microbial dysbiosis in asthmatic patients: a target for prevention and treatment? J Allergy Clin Immunol. 2017; 139 (4): 1071–81. DOI: https://doi.org/10.1016/j.jaci.2017.02.004

10. Thorsen J., Rasmussen M.A., Waage J., Mortensen M., Brejnrod A., Bonnelykke K., et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nat Commun. 2019; 10 (1): 5001. DOI: https://doi.org/10.1038/s41467-019-12989-7

11. Depner M., Taft D.H., Kirjavainen P.V., Kalanetra K.M., Karvonen A.M., Peschel S., et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020; 26 (11): 1766–75. DOI: https://doi.org/10.1038/s41591-020-1095-x

12. Abrahamsson T.R., Jakobsson H.E., Andersson A.F., Björkstén B., Engstrand L., Jenmalm M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014; 44 (6): 842–50. DOI: https://doi.org/10.1111/cea.12253

13. Torow N., Hornef M.W. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol. 2017; 198 (2): 557–63. DOI: https://doi.org/10.4049/jimmunol.1601253

14. Gonchar N.V., Babachenko I.V., Gostev V.V., Ibragimova O.M. Characteristics of the intestinal microbiota of children of the first year of life according to the sequencing of the 16S ribosomal RNA gene. Zhurnal infektologii [Journal of Infectology]. 2017; 9 (2): 23–8. DOI: https://doi.org/10.22625/2072-6732-2017-9-2-23-28 (in Russian)

15. Stokholm J., Blaser M.J., Thorsen J., Rasmussen M.A., Waage J., Vinding R.K., et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018; 9 (1): 141. DOI: https://doi.org/10.1038/s41467-017-02573-2

16. Arrieta M.-C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015; 7 (307): 152. DOI: https://doi.org/10.1126/scitranslmed.aab2271

17. Borbet T.C., Zhang X., Müller A., Blaser M.J. The role of the changing human microbiome in the asthma pandemic. J Allergy Clin Immunol. 2019; 144 (6): 1457–66. DOI: https://doi.org/10.1016/j.jaci.2019.10.022

18. Stokholm J. Can perturbations in microbial maturation cause asthma? Lancet Respir Med. 2020; 8 (11): 1063–65. DOI: https://doi.org/10.1016/S2213-2600(20)30002-3

19. Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014; 20 (2): 159–66. DOI: https://doi.org/10.1038/nm.3444

20. Sheveleva S.A., Kuvaeva I.B., Efimochkina N.R., Markova Yu.M., Prosyannikov M.Yu. Gut microbiome: from the reference of the norm to pathology. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 35–51. DOI: https://doi.org/10.24411/0042-8833-2020-10040 (in Russian)

21. Roduit C., Frei R., Ferstl R. Loeliger S., Westermann P., Rhyner C., et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74 (4): 799–809. DOI: https://doi.org/10.1111/all.13660

22. Zol’nikova O.Yu., Potskhverashvili N.D., Kokina N.I., Trukhmanov A.S., Ivashkin V.T. Short-chain fatty acids of the intestine in patients with bronchial asthma. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii [Russian Journal of Gastroenterology, Hepatology, Coloproctology]. 2019; 29 (2): 53–9. DOI: https://doi.org/10.22416/1382-4376-2019-29-2-53-59 (in Russian)

23. Chiu C.-Y., Cheng M.-L., Chiang M.-H., Kuo Y.L., Tsai M.H., Chiu C.C., et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr Allergy Immunol. 2019; 30 (7): 689–97. DOI: https://doi.org/10.1111/pai.13096

24. Patrick D.M., Sbihi H., Dai D.L.Y., Al Mamun A., Rasali D., Rose C., et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies. Lancet Respir Med. 2020; 8 (11): 1094–105. DOI: https://doi.org/10.1016/S2213-2600(20)30052-7

25. Teo S.M., Tang H.H.F., Mok D. Judd L.M., Watts S.C., Pham K., et al. Airway microbiota dynamics uncover a critical window for interplay of pathogenic bacteria and allergy in childhood respiratory disease. Cell Host Microbe. 2018; 24 (3): 341–52. DOI: https://doi.org/10.1016/j.chom.2018.08.005

26. Abreo A., Gebretsadik T., Stone C.A., Hartert T.V. The impact of modifiable risk factor reduction on childhood asthma development. Clin Transl Med. 2018; 7: 15. DOI: https://doi.org/10.1186/s40169-018-0195-4

27. Donovan B.M., Abreo A., Ding T., Gebretsadik T., Turi K.N., Yu C., et al. Dose, timing, and type of infant antibiotic use and the risk of childhood asthma. Clin Infect Dis. 2020; 70 (8): 1658–65. DOI: https://doi.org/10.1093/cid/ciz448

28. Dogaru C.M., Nyffenegger D., Pescatore A.M., Spycher B.D., Kuehni C.E. Breastfeeding and childhood asthma: systematic review and meta-analysis. Am J Epidemiol. 2014; 179 (10): 1153–67. DOI: https://doi.org/10.1093/aje/kwu072

29. Perdijk O., Marsland B.J. The microbiome: toward preventing allergies and asthma by nutritional intervention. Curr Opin Immunol. 2019; 60: 10–8. DOI: https://doi.org/10.1016/j.coi.2019.04.001

30. Riedler J., Braun-Fahrländer C., Eder W., Schreuer M., Waser M., Maisch S., et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001; 358 (9288): 1129–33. DOI: https://doi.org/10.1016/S0140-6736(01)06252-3

31. Von Ehrenstein O.S., Von Mutius E., Illi S., Baumann L., Böhm O., von Kries R. Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy. 2000; 30 (2): 187–93. DOI: https://doi.org/10.1046/j.1365-2222.2000.00801.x

32. Ojwang V., Nwaru B.I., Takkinen H.-M., Kaila M., Niemelä O., Haapala A.M., et al. Early exposure to cats, dogs and farm animals and the risk of childhood asthma and allergy. Pediatr Allergy Immunol. 2020; 31 (3): 265–72. DOI: https://doi.org/10.1111/pai.13186

33. Zakeri A., Russo M. Dual role of toll-like receptors in human and experimental asthma models. Front Immunol. 2018; 15 (9): 1027. DOI: https://doi.org/10.3389/fimmu.2018.01027

34. Michels K.R., Lukacs N.W., Fonseca W. TLR activation and allergic disease: early life microbiome and treatment. Curr Allergy Asthma Rep. 2018; 18 (11): 61. DOI: https://doi.org/10.1007/s11882-018-0815-5

35. Brick T., Hettinga K., Kirchner B., Pfaffl M.W., Ege M.J. The beneficial effect of farm milk consumption on asthma, allergies, and infections: from meta-analysis of evidence to clinical trial. J Allergy Clin Immunol Pract. 2020; 8 (3): 878–89. DOI: https://doi.org/10.1016/j.jaip.2019.11.017

36. Ukraintsev S.E. Some aspects of protein and fat components of cow's milk in the nutrition of young children. Pediatriya [Pediatrics]. 2010; 89 (5): 95–100. (in Russian)

37. Elazab N., Mendy A., Gasana J., Vieira E.R., Quizon A., Forno E. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. 2013; 132 (3): 666–76. DOI: https://doi.org/10.1542/peds.2013-0246

38. Vientós-Plotts A.I., Ericsson A.C., Rindt H., Reinero C.R. Oral probiotics alter healthy feline respiratory microbiota. Front Microbiol. 2017; 8: 1287. DOI: https://doi.org/10.3389/fmicb.2017.01287

39. Fitzgibbon G., Mills K.H.G. The microbiota and immune-mediated diseases: opportunities for therapeutic intervention. Eur J Immunol. 2020; 50 (3): 326–37. DOI: https://doi.org/10.1002/eji.201948322

40. Liu J., Tu C., Yu J., Chen M., Tan C., Zheng X., et al. Maternal microbiome regulation prevents early allergic airway diseases in mouse offspring. Pediatr Allergy Immunol. 2020; 31 (8): 962–73. DOI: https://doi.org/10.1111/pai.13315

41. Zhang G.-Q., Hu H.-J., Liu C.-Y., Zhang Q., Shakya S., Li Z.Y. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMAcompliant systematic review and metaanalysis of randomized controlled trials. Medicine. 2016; 95 (8): 2562. DOI: https://doi.org/10.1097/MD.0000000000002562

42. Mansfield J.A., Bergin S.W., Cooper J.R., Olsen C.H. Comparative probiotic strain efficacy in the prevention of eczema in infants and children: a systematic review and meta-analysis. Mil Med. 2014; 179 (6): 580–92. DOI: https://doi.org/10.7205/MILMED-D-13-00546

43. Li L., Han Z., Niu X., Zhang G., Jia Y., Zhang S., et al. Probiotic supplementation for prevention of atopic dermatitis in infants and children: a systematic review and meta-analysis. Am J Clin Dermatol. 2019; 20 (3): 67–77. DOI: https://doi.org/10.1007/s40257-018-0404-3

44. Zuccotti G., Meneghin F., Aceti A., Barone G., Callegari M.L., Di Mauro A., et al. Probiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy. 2015; 70 (11): 1356–71. DOI: https://doi.org/10.1111/all.12700

45. Azad M.B., Coneys J.G., Kozyrskyj A.L., Field C.J., Ramsey C.D., Becker A.B., et al. Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze: systematic review and meta-analysis. BMJ. 2013; 347: 6471. DOI: https://doi.org/10.1136/bmj.f6471

46. Wei X., Jiang P., Liu J., Sun R., Zhu L. Association between probiotic supplementation and asthma incidence in infants: a meta-analysis of randomized controlled trials. J Asthma. 2020; 57 (2): 167–78. DOI: https://doi.org/10.1080/02770903.2018.1561893

47. Du X., Wang L., Wu S., Yuan L., Tang S., Xiang Y., et al. Efficacy of probiotic supplementary therapy for asthma, allergic rhinitis, and wheeze: a meta-analysis of randomized controlled trials. Allergy Asthma Proc. 2019; 40 (4): 250–60. DOI: https://doi.org/10.2500/aap.2019.40.4227

48. Lin J., Zhang Y., He C., Dai J. Probiotics supplementation in children with asthma: a systematic review and meta-analysis. J Paediatr Child Health. 2018; 54 (9): 953–61. DOI: https://doi.org/10.1111/jpc.14126

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»