To the content
4 . 2021

Metabolic disorders of chronically critically ill patients caused by consequences of traumatic brain injury

Abstract

The problem of chronic critical illness therapy is relevant all over the world. Revealing the metabolic function in patients in chronic critical condition is an important link in the development of adequate treatment and rehabilitation tactics.

The aim - identification of metabolic features in chronic critical patients after brain injury in the first 3 days from the moment of admission to the rehabilitation center.

Material and methods. Single-center observational study included a group of 25 patients with chronic critical illness, aged 38.7±14.0 years with body mass index 20.8±4.3 kg/m2 (min 14.5; max 29.7), who were on independent breathing through a tracheostomy tube, and who have pronounced neurological disorders in the form of depression of minimally conscious state, FOUR scale from 12 to 16 points, as well as bedsores 1-2 stage and polysegmental pneumonia. The patients underwent indirect calorimetry and analysis of biochemical parameters of protein, carbohydrate, fat and mineral metabolism, as well as the level of nitrogen excretion with urine.

Results and discussion. The data obtained indicate that chronic critical ill patients with the consequences of traumatic brain injury had pronounced metabolic disorders, mainly of a protein component. Total protein level decreased up to 61.0±9.4 g/l (min 39.1; max 83.1), albumin up to 30.2±6.0g/l (min 17.4; max37.8), prealbumin up to 0.13± 0.06 g/l (min 0.04; max 0.23) and transferrin up to 147.7±37.7 mg/dl (min 84.0; max 209.0). The patients’ requirement in protein was 106.4±38.5 g/day (min 57.1; max 160.5) or 1.55±0.46 g/kg/day (min 0.75; max 2.22). The level of resting energy expenditure measured by indirect calorimetry was 1549.1±421.8 kcal/day (min 673.0; max 2430.0) or in terms of body weight 24.8±7.6 kcal/kg/day (min 12.4; max 45.8).

Conclusion. The data obtained indicate a continuing catabolic phase in patients more than 30 days after the primary injury, which led to their chronic critical condition.

Keywords:chronic critical illness, indirect calorimetry, brain injury, rehabilitation, chronic disorders of consciousness

Funding. The study was not sponsored.

Conflict of interest. The authors declare no conflicts of interest.

For citation: Petrova M.V., Sergeev I.V., Shestopalov А.Е., Lukyanets O.B. Metabolic disorders of chronically critically ill patients caused by consequences of traumatic brain injury. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 103-11. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-103-111 (in Russian)

References

1. Girard K., Raffin T.A. The chronically critically ill: to save or let die? Respir Care. 1985; 30 (5): 339–47. PMID: 10315661.

2. Efron P.A., Mohr A.M., Bihorac A., et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery. 2018; 164 (2): 178–84. DOI: https://doi.org/10.1016/j.surg.2018.04.011

3. Stortz J.A., Mira J.C., Raymond S.L., Loftus T.J., Ozrazgat-Baslanti T., Wang Z., et al. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg. 2018; 84 (2): 342–9. DOI: https://doi.org/10.1097/TA.0000000000001758

4. Guirgis F.W., Brakenridge S., Sutchu S., Khadpe J.D., Robinson T., Westenbarger R., et al. The long-term burden of severe sepsis and septic shock: Sepsis recidivism and organ dysfunction. J Trauma Acute Care Surg. 2016; 81 (3): 525–32. DOI: https://doi.org/10.1097/TA.0000000000001135 PMID: 27398984.

5. Singer P. Preserving the quality of life: nutrition in the ICU. Crit Care. 2019; 23 (Suppl 1): 139. DOI: https://doi.org/10.1186/s13054-019-2415-8

6. Mira J.C., Gentile L.F., Mathias B.J., et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017; 45 (2): 253–62. DOI: https://doi.org/10.1097/CCM.0000000000002074

7. Kahn J.M., Le T., Angus D.C., Cox C.E., Hough C.L., White D.B., et al.; Study Group Investigators. The epidemiology of chronic critical illness in the United States. Crit Care Med. 2015; 43 (2): 282–7. DOI: https://doi.org/10.1097/CCM.0000000000000710 PMID: 25377018.

8. Vanzant E.L., Lopez C.M., Ozrazgat-Baslanti T., Ungaro R., Davis R., Cuenca A.G., et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014; 76 (1): 21–9.

9. Mackenzie T.A., Clark N.G., Bistrian B.R., Flatt J.P., Hallowell E.M., Blackburn G.L. A simple method for estimating nitrogen balance in hospitalized patients: a review and supporting data for a previously proposed technique. J Am Coll Nutr. 1985; 4 (5): 575–81. DOI: https://doi.org/10.1080/07315724.1985.10720100 PMID: 3932497.

10. Burgos R., Bretón I., Cereda E., Desport J.C., Dziewas R., Genton L., et al. ESPEN guideline clinical nutrition in neurology. Clin Nutr. 2018; 37 (1): 354–96. DOI: https://doi.org/10.1016/j.clnu.2017.09.003

11. Van Laecke S. Hypomagnesemia and hypermagnesemia. Acta Clin Belg. 2019; 74 (1): 41–7. DOI: https://doi.org/10.1080/17843286.2018.1516173

12. Stewart M.L., Biddle M., Thomas T. Evaluation of current feeding practices in the critically ill: a retrospective chart review. Intensive Crit Care Nurs. 2017; 38: 24–30. DOI: https://doi.org/10.1016/j.iccn.2016.05.004

13. Chapple L.S., Deane A.M., Heyland D.K., Lange K., Kranz A.J., Williams L.T., et al. Energy and protein deficits throughout hospitalization in patients admitted with a traumatic brain injury. Clin Nutr. 2016; 35 (6): 1315–22. DOI: https://doi.org/10.1016/j.clnu.2016.02.009

14. Huang C.M., Lowes M.A., Cserti C., Alavi A. Hemoglobin levels and serum C-reactive protein in patients with moderate to severe hidradenitis suppurativa. J Cutan Med Surg. 2019; 23 (5): 501–6. DOI: https://doi.org/10.1177/1203475419858963

15. Heidari B., Fazli M.R., Misaeid M.A., Heidari P., Hakimi N., Zeraati A.A. A linear relationship between serum high-sensitive C-reactive protein and hemoglobin in hemodialysis patients. Clin Exp Nephrol. 2015; 19 (4): 725–31. DOI: https://doi.org/10.1007/s10157-014-1048-0

16. Zuccato C., Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009; 5 (6): 311–22. DOI: https://doi.org/10.1038/nrneurol.2009.54

17. Cheng B., Mattson M.P. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron. 1991; 7 (6): 1031–41. DOI: https://doi.org/10.1016/0896-6273(91)90347-3

18. Chua A.C., Graham R.M., Trinder D., Olynyk J.K. The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci. 2007; 44 (5–6): 413–59. DOI: https://doi.org/10.1080/10408360701428257

19. Herridge M.S., Chu L.M., Matte A., Tomlinson G., Chan L., Thomas C., et al.; RECOVER Program Investigators (Phase 1: towards RECOVER); Canadian Critical Care Trials Group. The RECOVER Program: Disability Risk Groups and 1-Year Outcome after 7 or More Days of Mechanical Ventilation. Am J Respir Crit Care Med. 2016; 194 (7): 831–44. DOI: https://doi.org/10.1164/rccm.201512-2343OC PMID: 26974173.

20. Puthucheary Z.A., Denehy L. Exercise interventions in critical illness survivors: understanding inclusion and stratification criteria. Am J Respir Crit Care Med. 2015; 191 (12): 1464–7. DOI: https://doi.org/10.1164/rccm.201410-1907LE

21. Shevelev O.A., Saidov Sh.Kh., Petrova M.V., Chubarova M.A., Usmanov E.Sh. Craniocerebral Hypothermia as a therapeutic treatment option for thermal balance disturbances in post-comatose patients. Fizicheskaya i reabilitatsionnaya meditsina: meditsinskaya reabilitatsiya [Physical and Rehabilitation Medicine, Medical Rehabilitation]. 2020; 2 (1): 11–9. (in Russian)

22. Usmanov E.Sh., Chubarova M.A., Saidov Sh.Kh. Emerging trends in the use of therapeutic hypothermia as a method for neuroprotection in brain damage (review). Sovremennye tekhnologii v meditsine [Modern Technologies in Medicine]. 2020; 12 (5): 94–105. DOI: https://doi.org/10.17691/stm2020.12.5.11 (in Russian)

23. Shevelev O.A, Petrova M.V., Saidov Sh.Kh., Chubarova M.A., Usmanov E.Sh., Pranil Pradkhan, et al. Correction of cerebral thermal balance disruption in therapy and rehabilitation of patients with cerebral pathology. Fizicheskaya i reabilitatsionnaya meditsina: meditsinskaya reabilitatsiya [Physical and Rehabilitation Medicine, Medical Rehabilitation]. 2019; 1 (4): 56–63. (in Russian)

24. Soliman I.O., Cremer O.L., de Lange D.W., et al. The ability of intensive care unit physicians to estimate long-term prognosis in survivors of critical illness. J Crit Care. 2018; 43: 148–55.

25. Detsky M.E., Harhay M.O., Bayard D.F., Delman A.M., Buehler A.E., Kent S.A., et al. Six-month morbidity and mortality among intensive care unit patients receiving life-sustaining therapy. a prospective cohort study. Ann Am Thorac Soc. 2017; 14 (10): 1562–70. DOI: https://doi.org/10.1513/AnnalsATS.201611-875OC

26. Rose L., Istanboulian L., Allum L., Burry L., Dale C., Hart N., et al. Patient and family centered actionable processes of care and performance measures for persistent and chronic critical illness: a systematic review. Crit Care Explor. 2019; 1 (4): e0005. DOI: https://doi.org/10.1097/CCE.0000000000000005

27. Nanas S., Kritikos K., Angelopoulos E., Siafaka A., Tsikriki S., Poriazi M., et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008; 118 (3): 175–81. DOI: https://doi.org/10.1111/j.1600-0404.2008.00996.x

28. Weber-Carstens S., Deja M., Koch S., Spranger J., Bubser F., Wernecke K.D., et al. Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care. 2010; 14 (3): R119. DOI: https://doi.org/10.1186/cc9074

29. de Jonghe B., Lacherade J.C., Sharshar T., Outin H. Intensive care unit-acquired weakness: risk factors and prevention. Crit Care Med. 2009; 37 (10 suppl): S309–15. DOI: https://doi.org/10.1097/CCM.0b013e3181b6e64c

30. Waldhausen E., Mingers B., Lippers P., Keser G. Critical illness polyneuropathy due to parenteral nutrition. Intensive Care Med. 1997; 23 (8): 922–3.

31. Masiero E., Agatea L., Mammucari C., Blaauw B., Loro E., Komatsu M., et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009; 10 (6): 507–15. DOI: https://doi.org/10.1016/j.cmet.2009.10.008 PMID: 19945408.

32. Derde S., Vanhorebeek I., Güiza F., Derese I., Gunst J., Fahrenkrog B., et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012; 153 (5): 2267–76. DOI: https://doi.org/10.1210/en.2011-2068

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»