To the content
5 . 2021

Possible mechanisms of impaired post-vaccination immune response in obesity

Abstract

Obese people are at high risk of developing infections, including COVID-19, and are prone to a more severe course and a poorer prognosis of diseases. The review summarizes information on the post-vaccination immune response in obesity in children and adults with infections. The SARS-COV-2 pandemic further exacerbates this problem of the adequacy of the immune response to vaccination of obese people.

The purpose of this review is to present and summarize information on the changes in various links of cellular and humoral immunity in the experiment and in the clinic during the immune response to vaccination in obesity.

Results. The mechanisms of action of obesity and associated chronic inflammation and metabolic dysregulation on the post-vaccination immune response in various infections are discussed. The systemic inflammatory response that occurs in obesity represents a barrier to the induction of a sustained immune response. In obese individuals, innate and adaptive immune responses are slowed down and diminished, contributing to the spread of infections.

Conclusion. In obesity, the differentiation and proliferation of cells of the immune system is impaired, and the immune response to vaccination changes. Further research is needed to study post-vaccination immunity in obesity, taking into account the effect on the vaccination of the microbiota of a particular person, the presence of possible comorbid conditions.

Keywords:obesity, vaccination, SARS-COV-2, immune response, chronic inflammation, metabolic dysregulation, children, adults

Funding. The study had no sponsorship.

Conflict of interest. The authors declare no conflicts of interest.

For citation: Dzhumagaziev A.A., Kostinov M.P., Bezrukova D.A., Usaeva O.V. Possible mechanisms of impaired post-vaccination immune response in obesity. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (5): 15-24. DOI: https://doi.org/10.33029/0042-8833-2021-90-5-15-24 (in Russian)

References

1. WHO. Obesity and Overweight [Electronic resource]. World Health Organization, 2019. URL: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (date of access April 26, 2019)

2. Kim S.Y., Yoo D.-M., Min C., et al. Analysis of mortality and morbidity in COVID-19 patients with obesity using clinical epidemiological data from the Korean Center for Disease Control & Prevention. Int J Environ Res Public Health. 2020; 17 (24): 9336. DOI: https://doi.org/10.3390/ijerph17249336

3. Demidova T.Yu., Volkova E.V., Gritskevich E.Yu. Obesity and COVID-19: a fatal link. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training] 2020; 9 (3): 25–32. DOI: https://doi.org/10.33029/2305-3496-2020-9-3S-25-32 (in Russian)

4. Kanorskii S.G. COVID-19 and obesity: what is known about the features of pathogenesis and treatment? Yuzhno-Rossiyskiy zhurnal terapevticheskoy praktiki [South-Russian Journal of Therapeutic Practice]. 2021; 2 (1): 17–23. DOI: https://doi.org/10.21886/2712-8156-2021-2-1-17-24 (in Russian)

5. Simonnet A., Chetboun M., Poissy J., et al. High prevalence of obesity in severe acute respiratory syndrome Coronavirus2 (SARSCoV2) requiring invasive mechanical ventilation. Obesity. 2020; 28 (7): 1195–9. DOI: https://doi.org/10.1002/oby.22831

6. Maffetone P.B., Laursen P.B. The perfect storm: Coronavirus (COVID-19) pandemic meets overfat pandemic. Front Public Health. 2020; 8 (20): 3415–22. DOI: https://doi.org/10.3389/fpubh.2020.00135

7. Shvarts V.Ya. Adipose tissue as an endocrine organ. Problemy endokrinologii [Problems of Endocrinology]. 2009; 55 (1): 38–44. DOI: https://doi.org/10.14341/probl200955138-43 (in Russian)

8. Frasca D., Blomberg B.B., Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol. 2017; 8: 1745. DOI: https://doi.org/10.3389/fimmu.2017.01745

9. Frasca D., Mc Elhaney J. Influence of obesity on pneumococcus infection risk in the elderly. Front Endocrinol (Lausanne). 2019; 10: 71. DOI: https://doi.org/10.3389/fendo.2019.00071

10. Painter S.D., Ovsyannikova I.G., Poland G.A. The weight of obesity on the human immune response to vaccination. Vaccine 2015; 33: 4422–9. DOI: https://doi.org/10.1016/j.vaccine.2015.06.101

11. Mancuso P. Obesity and respiratory infections: does excess adiposity weigh down host defense? Pulm Pharmacol Ther. 2013; 26 (4): 412–9. DOI: https://doi.org/10.1016/j.pupt.2012.04.006

12. Sun Y., Wang Q., Yang G., et al. Weight and prognosis for influenza A(H1N1)pdm09 infection during the pandemic period between 2009 and 2011: a systematic review of observational studies with meta-analysis. Infect Dis. 2016; 48: 813–22. DOI: https://doi.org/10.1080/23744235.2016.1201721

13. Ledford H. How obesity could create problems for a COVID vaccine? Nature. 2020; 586 (7830): 488–9. DOI: https://doi.org/10.1038/d41586-020-02946-6

14. Honce R, Schultz-Cherry S. Impact of obesity on influenza a virus pathogenesis, immune response, and evolution. Front Immunol. 2019; 10: 1071. DOI: https://doi.org/10.3389/fimmu.2019.01071

15. Dixon A.E., Peters U. The effect of obesity on lung function. Exp Rev Respir Med. 2018; 12: 755–67. DOI: https://doi.org/10.1080/17476348.2018.1506331

16. Young K.M., Gray C.M., Bekker L.G. Is obesity a risk factor for vaccine non-responsiveness? PLoS One. 2013; 8 (12): e82779. DOI: https://doi.org/10.1371/journal.pone.0082779

17. Eliakim A., Swindt C., Zaldivar F., et al. Reduced tetanus antibody titers in overweight children. Autoimmunity. 2006; 39 (2): 137–41. DOI: https://doi.org//10.1080/08916930600597326

18. Sheridan P., Paich H., Handy J., et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond). 2012; 36 (8): 1072–7. DOI: https://doi.org/10.1038/ijo.2011.208

19. Esposito S., Giavoli C., Trombetta C., et al. Immunogenicity, safety and tolerability of inactivated trivalent influenza vaccine in overweight and obese children. Vaccine. 2016; 34 (1): 56–60. DOI: https://doi.org/10.1016/j.vaccine.2015.11.019 Epub 2015 Nov 19.

20. Dzhumagaziev A.A., Usayeva O.V., Kostinov M.P., Bezrukova D.A. [Perverted post-vaccination immunity to pneumococcus in overweight patients. Detskie infektsii [Children’s Infections]. 2019; 18 (S): 49–50. (in Russian)

21. Kostinov M.P., Dzhumagaziev A.A., Bezrukova D.A., et al. Immune response to capsular polysaccharides of Streptococcus рneumoniae in overweight children vaccinated with 13-valent conjugate pneumococcal vaccine. Pediatriya. Zhurnal imeni G.N. Speranskogo [Pediatrics Journal named after G.N. Speranskiy]. 2020; 99 (6): 177–83. DOI: https://doi.org/10.24110/0031-403X-2020-99-6-177-183 (in Russian)

22. Sauvageau C., Gilca V., Donken R., et al. The immune response to a two-dose schedule of quadrivalent HPV vaccine in 9-13 year-old girls: Is it influenced by age, menarche status or body mass index? Vaccine. 2019; 37 (49): 7203–6. DOI: https://doi.org/10.1016/j.vaccine.2019.09.089

23. Richard C., Wadowski M., Goruk S., et al. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care. 2017; 5: e000379. DOI: https://doi.org/10.1136/bmjdrc-2016-000379

24. Dillman R.O. A novel vaccine for the novel corona virus. Am J Biomed Sci Res. 2020; 11 (3). DOI: https://doi.org/10.34297/AJBSR.2020.11.001631

25. Gardner E.M., Beli E., Clinthorne J.F., Duriancik D.M. Energy intake and response to infection with influenza. Annu Rev Nutr. 2011; 31: 353–67. DOI: https://doi.org/10.1146/annurev-nutr-081810-160812

26. Karlsson E.A., Sheridan P.A., Beck M.A. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010; 184 (6): 3127–33. DOI: https://doi.org//10.4049/jimmunol.0903220

27. Karlsson E.A., Sheridan P.A., Beck M.A. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. J Nutr. 2010; 140 (9): 1691–7. DOI: https://doi.org/10.3945/jn.110.123653

28. Park H.L., Shim S.H., Lee E.Y., et al. Obesity-induced chronic inflammation is associated with the reduced efficacy of influenza vaccine. Hum Vaccin Immunother. 2014; 10 (5): 1181–6. DOI: https://doi.org/10.4161/hv.28332

29. Kim Y.H., Kim J.K., Kim D.J., et al. Diet-induced obesity dramatically reduces the efficacy of a 2009 pandemic H1N1 vaccine in a mouse model. J Infect Dis. 2012; 205 (2): 244–51. DOI: https://doi.org/10.1093/infdis/jir731

30. Paich H.A., Sheridan P.A., Handy J., et al. Overweight and obese adult humans have a defective cellula immune response to pandemic H1N1 influenza A virus. Obesity. 2013; 21: 2377–86. DOI: https://doi.org/10.1002/oby.20383

31. Shah D., Romero F., Duong M., et al. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury. Sci Rep. 2015; 5: 11362. DOI: https://doi.org/10.1038/srep11362

32. Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11: 85–97. DOI: https://doi.org/10.1038/nri2921

33. Smith A.G., Sheridan P.A., Harp J.B., Beck M.A. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007; 137: 1236–43. DOI: https://doi.org/10.1093/jn/137.5.1236

34. Easterbrook J.D., Dunfee R.L., Schwartzman L.M., et al. Obese mice have increased morbidity and mortality compared to non-obese mice during infection with the 2009 pandemic H1N1 influenza virus. Influenza Other Respir Viruses. 2011; 5: 418–25. DOI: https://doi.org/10.1111/j.1750-2659.2011.00254

35. Huang C.G., Lee L.A., Wu Y.C., et al. A pilot study on primary cultures of human respiratory tract epithelial cells to predict patients’ responses to H7N9 infection. Oncotarget. 2018; 9: 14 492–508. DOI: https://doi.org/10.18632/oncotarget.24537

36. Pothlichet J., Chignard M., Si-Tahar M. Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol. 2008; 180: 2034–8. DOI: https://doi.org/10.4049/jimmunol.180.4.2034

37. Blumer T., Coto-Llerena M., Duong F.H.T., Heim M.H. SOCS1 is an inducible negative regulator of interferon lambda (IFN-lambda)-induced gene expression in vivo. J Biol Chem. 2017; 292: 17 928–38. DOI: https://doi.org/10.1074/jbc.M117.78887781

38. Teran-Cabanillas E., Montalvo-Corral M., Silva-Campa E., et al. Production of interferon alpha and beta, pro-inflammatory cytokines and the expression of suppressor of cytokine signaling (SOCS) in obese subjects infected with influenza A/H1N1. Clin Nutr. 2014; 33: 922–6. DOI: https://doi.org/10.1016/j.clnu.2013.10.011

39. Teran-Cabanillas E., Montalvo-Corral M., Caire-Juvera G., et al. Decreased interferon-alpha and interferon-beta production in obesity and expression of suppressor of cytokine signaling. Nutrition. 2013; 29: 207–12. DOI: https://doi.org/10.1016/j.nut.2012.04.019

40. Wauman J., Zabeau L., Tavernier J. The leptin receptor complex: heavier than expected? Front Endocrinol. 2017; 8: 30. DOI: https://doi.org/10.3389/fendo.2017.00030

41. Manicone A.M., Gong K., Johnston L.K., Giannandrea M. Diet-induced obesity alters myeloid cell populations in naive and injured lung. Respir Res. 2016; 17: 24. DOI: https://doi.org/10.1186/s12931-016-0341-8

42. Agrawal M., Kern P.A., Nikolajczyk B.S. The immune system in obesity: developing paradigms amidst inconvenient truths. Curr Diabetes Rep. 2017; 17: 87. DOI: https://doi.org/10.1007/s11892-017-0917-9

43. Green W.D., Beck M.A. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017; 14 (suppl 5): S406–9. DOI: https://doi.org/10.1513/AnnalsATS.201706-447AW

44. Milner J.J., Rebeles J., Dhungana S., et al. Obesity Increases mortality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice. J Immunol. 2015; 194: 4846–59. DOI: https://doi.org/10.4049/jimmunol.1402295

45. Meliopoulos V., Livingston B., Van de Velde L.A., et al. Absence of beta6 integrin reduces influenza disease severity in highly susceptible obese mic. J Virol. 2018; 93: e01646-18. DOI: https://doi.org/10.1128/JVI.01646-18

46. Ahn S.Y., Sohn S.H., Lee S.Y., Park H.L., Park Y.W., Kim H., et al. Environ Toxicol Pharmacol. 2015; 40: 924–30. DOI: https://doi.org/10.1016/j.etap.2015.09.020

47. Cho W.J., Lee D.K., Lee S.Y., et al. Diet-induced obesity reduces the production of influenza vaccine-induced antibodies via impaired macrophage function. Acta Virol. 2016; 60: 298–306. DOI: https://doi.org/10.4149/av_2016_03_298

48. Radigan K.A., Morales-Nebreda L., Soberanes S., et al. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages. PLoS One. 2014; 9: e108138. DOI: https://doi.org/10.1371/journal.pone.0108138

49. Costanzo A.E., Taylor K.R., Dutt S., et al. Obesity impairs gammadelta T cell homeostasis and antiviral function in humans. Environ Toxicol Pharmacol. 2015; 40: 924–30. DOI: https://doi.org/10.1016/j.etap.2015.09.020

50. Costanzo A.E., Taylor K.R., Dutt S., et al. Obesity impairs gammadelta T cell homeostasis and antiviral function in human. PLoS One. 2015; 10: e0120918. DOI: https://doi.org/10.1371/journal.pone.01209189

51. Smith A.G., Sheridan P.A., Tseng R.J., et al. Selective impairment in dendritic cell function and altered antigen-specific CD8+ T-cell responses in diet-induced obese mice infected with influenza virus. Immunology. 2009; 126: 268–79. DOI: https://doi.org/10.1111/j.1365-2567.2008.02895

52. Pizzolla A., Oh D.Y., Luong S., et al. High Fat Diet Inhibits dendritic cell and t cell response to allergens but does not impair inhalational respiratory tolerance. PLoS One. 2016; 11: e0160407. DOI: https://doi.org/10.1371/journal.pone.0160407

53. O’Shea D., Corrigan M., Dunne M.R., et al. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection. Int J Obes. 2013; 37: 1510–3. DOI: https://doi.org/10.1038/ijo.2013.16

54. Inzaugarat M.E., Billordo L.A., Vodanovich F., et al. Alterations in innate and adaptive immune leukocytes are involved in paediatric obesity. Pediatr Obes. 2014; 9: 381–90. DOI: https://doi.org/10.1111/j.2047-6310.2013.00179

55. O’Rourke R.W., Kay T., Scholz M.H., et al. Alterations in T-cell subset frequency in peripheral blood in obesity. Obes Surg. 2005; 15: 1463–8. DOI: https://doi.org/10.1381/096089205774859308

56. Tsai C.Y., Liong K.H., Gunalan M.G., et al. Type I IFNs and IL-18 regulate the antiviral response of primary human gammadelta T cells against dendritic cells infected with Dengue virus. J Immunol. 2015; 194: 3890–900. DOI: https://doi.org/10.4049/jimmunol.1303343

57. Yang H., Youm Y.H., Vandanmagsar B., et al. Obesity accelerates thymic aging. Blood. 2009; 114: 3803–12. DOI: https://doi.org/10.1182/blood-2009-03-213595

58. Perez L.M., Pareja-Galeano H., Sanchis-Gomar F., et al. «Adipaging»: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016; 594: 3187–207. DOI: https://doi.org/10.1113/JP271691

59. Rebeles J., Green W.D., Alwarawrah Y., et al. Obesity-induced changes in T cell metabolism are associated with impaired memory T cell response to influenza and are not reversed with weight loss. J Infect Dis. 2018; 219: 1652–61. DOI: https://doi.org/10.1093/infdis/jiy700

60. Shaikh S.R., Haas K.M., Beck M.A., Teague H. The eects of diet-induced obesity on B cell function. Clin Exp Immunol. 2015; 179: 90–9. DOI: https://doi.org/10.1111/cei.12444

61. Kosaraju R., Guesdon W., Crouch M.J., et al. B Cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection. J Immunol. 2017; 198: 4738–52. DOI: https://doi.org/10.4049/jimmunol.1601031

62. La Cava A., Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004; 4: 371–9. DOI: https://doi.org/10.1038/nri1350

63. Zhang A.J., To K.K., Li C., et al. Leptin mediates the pathogenesis of severe 2009 pandemic influenza A(H1N1) infection associated with cytokine dysregulation in mice with diet-induced obesity. J Infect Dis. 2013; 207: 1270–80. DOI: https://doi.org/10.1093/infdis/jit031

64. Ruhl C.E., Everhart J.E., Ding J., et al. Serum leptin concentrations and body adipose measures in older black and white adults. Am J Clin Nutr. 2004; 80: 576–83. DOI: https://doi.org/10.1093/ajcn/80.3.576

65. Loreda S., Yang S.Q., Lin H.Z., et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998; 12: 57–65. DOI: https://doi.org/10.1096/fasebj.12.1.57

66. Lord G.M., Matarese G., Howard J.K., et al. Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J Leukoc Biol. 2002; 72: 330–8. DOI: https://doi.org/10.1189/jlb.72.2.330

67. Frasca D., Ferracci F., Diaz A., et al. Obesity decreases B cell responses in young and elderly individuals. Obesity. 2016; 24: 615–25. DOI: https://doi.org/10.1002/oby.21383

68. Dzhumagaziev A.A., Bezrukova D.A., Bogdan’yants M.V., et al. Obesity in children in the modern world: realities and possible solutions. Voprosy Sovremennoi Pediatrii [Current Pediatrics]. 2016; 15 (3): 250–6. DOI: https://doi.org/10.15690/vsp.v15i3.1561 (in Russian)

69. Bezrukova D.A., Dzhumagaziev A.A., Bogdan’yants M.V., et al. Obesity in children: state of the problem. Astrakhanskiy meditsinskiy zhurnal [Astrakhan Medical Journal]. 2017; 12 (3): 13–21. (in Russian)

70. Demidova T.Yu., Volkova E.I., Gritskevich E.Yu. Peculiarities of the COVID-19 course and consequences in overweight and obese patients. Lessons from the current pandemic. Ozhirenie i metabolism [Obesity and Metabolism]. 2020; 17 (4): 375–4. DOI: https://doi.org/10.14341/omet12663 (in Russian)

71. Kostinov M.P., Shmit’ko A.D., Polishchuk V.B., Khromova E.A. Modern representations of the new coronavirus and the disease caused by SARS-COV-2. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020; 9 (2): 33–42. DOI: https://doi.org/10.33029/2305-3496-2020-9-2-33-42 (in Russian)

72. Dzhumagaziev A.A., Kostinov M.P., Bezrukova D.A., et al. Vaccination paradoxes in obesity. Pediatriya [Pediatrics]. 2021; 100 (4): 105–10. DOI: https://doi.org/10.24110/0031-403X-2021-100-4-105-110 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»