To the content
6 . 2021

Risks associated with the consumption of inorganic and organic arsenic

Abstract

It is known that the chronic intake of arsenic (As) leads to the development of multisystem pathologies. In the case of high levels of As consumption, the risks of negative effects of exposure to inorganic and methylated forms persist for decades. The International Agency for Research on Cancer (IARC) has established that all inorganic forms of As are absolute carcinogens (group 1). Methylated forms of As are classified as substances possibly carcinogenic to humans (group 2b). Not metabolized in the human body forms of organic As are not carcinogenic to humans (group 3).

The aim - assessment of health risks of various forms of As contained in food, including seafood.

Material and methods. The scientific data regarding the risks associated with As contamination of food obtained by using PubMed, Web of Science, Google Scholar databases, legislative and regulatory acts of the Eurasian Economic Union, the Russian Federation, the Codex Alimentarius Commission, the European Union and other countries have been analyzed.

Results. The analysis of the available data showed that the degree of As toxicity decreased in the following order: glutathione of dimethylarsonic acid (DMAIIIGl) > methylarsic acid (MMAIII) > dimethylarsic acid (DMAIII) > arsenic hydrocarbons (AsHC) > arsenite (AsIII) > arsenate (AsV) > trimethylarsine (TMAIII) > methylarsonic acid (MMAV) > dimethylarsonic acid (DMAV) > DMAIII-sugar glyceride > DMAV-sugar glyceride > thio compounds of DMAV > arsenosugarsIII > arsenosugarsV > tetramethylarsonium chloride (TETPA) > trimethylarsine oxide (TMAO), arsenocholine (AsC) > arsenobetaine (AB). Consequently, the toxicity of some methylated and organic forms of As (for example, DMAIIIGl, AsHC) may be higher than that of its inorganic forms. It is known that As is found in foods mainly in organic forms. When ingested with food, As organic forms are metabolized and, thus, could cause a number of negative effects in the organism. Conclusion. High levels of organic and inorganic forms of As in food, including seafood, could have a negative impact on the health of the population, which makes it necessary to conduct additional assessments of the health risks of various forms of As entering the body. The insufficient amount of data on the toxicity of organic forms of As indicates the impossibility of separate setting of safety maximum levels for organic and inorganic forms of As in foods.

Keywords:arsenic (As), inorganic forms of arsenic (iAs), organic forms of arsenic (oAs), toxicity, risk assessment

Funding. The research was carried out at the expense of the subsidy for the implementation of the state task № 0529-2019-0057.

Conflict of interest. The authors declare no conflict of interest.

For citation: Bagryantseva O.V., Khotimchenko S.A. Risks associated with the consumption of inorganic and organic arsenic. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (6): 6-17. DOI: https://doi.org/10.33029/0042-8833-2021-90-6-6-17 (in Russian)

REFERENCES

1. Arsenic (addendum) safety evaluation of certain contaminants in food WHO Food additives series: 63 FAO JECFA Monographs 8. Geneva: World Health Organization, 2011: 153–316.

2. Dietary exposure to inorganic arsenic in the European population. Scientific report of EFSA. EFSA J. 2014; 12 (3): 3597. DOI: https://doi.org/10.2903/j.efsa.2014.3597

3. Arcella D., Cascio C., Ruiz J.A.G. Chronic dietary exposure to inorganic arsenic. EFSA J. 2021; 19 (1): 6380. DOI: https://doi.org/10.2903/j.efsa.2021.6380

4. Shi K., Wang Q., Wang G. Microbial oxidation of arsenite: regulation, chemotaxis, phosphate metabolism and energy generation. Front Microbiol. 2020; 11: 569282. DOI: https://doi.org/10.3389/fmicb.2020.569282

5. Nurchi V.M., Djordjevic A.B., Crisponi G., Alexander J., Bjørklund G., Aaseth J. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules. 2020; 10 (2): 235. DOI: https://doi.org/10.3390/biom10020235

6. Liu S., Guo X., Wu B., Yu H., Zhang X., Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014; 4: 6894. DOI: https://doi.org/10.1038/srep06894

7. Sung T.-Ch., Huang Jh.-W., Guo H.-R. Association between arsenic exposure and diabetes: a meta-analysis. Biomed Res Int. 2015; 2015: 368087. DOI: http://dx.doi.org/10.1155/2015/368087

8. A review of human carcinogens. Arsenic, metals, fibers, and dusts. IARC Monographs/IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr Eval Carcinog Risks Hum. 2012; 100 (Pt C): 11–465. PMID: 23189751; PMCID: PMC4781271. ISBN-13:978-9283213208, ISBN-13:978-9283201359.

9. Borak J., Hosgood H.D. Seafood arsenic: Implications for human risk assessment. Regul Toxicol Pharmacol. 2007; 47 (2): 204–12. DOI: http://dx.doi.org/10.1016/j.yrtph.2006.09.005

10. Luvonga C., Rimmer C.A., Yu L.L., Lee S.B. Organoarsenicals in seafood: occurrence, dietary exposure, toxicity, and risk assessment considerations – a review. J Agric Food Chem. 2020; 68 (4): 943–60. DOI: http://dx.doi.org/10.1021/acs.jafc.9b07532

11. Monteiro M.S., Sloth J., Holdt S., Hansen M. Analysis and risk assessment of seaweed. EFSA J. 2019; 17 (S2): e170915. DOI: http://dx.doi.org/10.2903/j.efsa.2019.e170915

12. Zhu Y.G., Yoshinaga M., Zhao F.J., Rosen B.P. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci. 2014; 42: 443–67. DOI: http://dx.doi.org/10.1146/annurev-earth-060313-054942

13. Taylor V., Goodale B., Raab A., Schwerdtle T., Reimer K., Conklin S., et al. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017; 580: 266–82. DOI: https://doi.org/10.1016/j.scitotenv.2016.12.113

14. Slejkovec Z., Stajnko A., Falnoga I., Lipej L., Mazej D., Horvat M., Faganeli J. Bioaccumulation of arsenic species in rays from the northern Adriatic Sea. Int J Mol Sci. 2014; 15 (12): 22 073–91. DOI: http://dx.doi.org/10.3390/ijms151222073

15. Pei J., Zuo J., Wang X., Yin J., Liu L., Fan W. The bioaccumulation and tissue distribution of arsenic species in tilapia. Int J Environ Res Public Health. 2019; 16 (5): 757. DOI: https://doi.org/10.3390/ijerph16050757

16. Yehiayan L., Stice S., Liu G., Matulis S., Boise L.H., Cai Y. Dimethylarsinothioyl glutathione as a metabolite in human multiple myeloma cell lines upon exposure to darinaparsin. Chem Res Toxicol. 2014; 27 (5): 754–64. DOI: https://doi.org/10.1021/tx400386c

17. Bartel M., Ebert F, Leffers L., Karst U., Schwerdtle T. Toxicological characterization of the inorganic and organic arsenic metabolite Thio-DMAV in cultured human lung cells. J Toxicol. 2011; 2011: 373141. DOI: https://doi.org/10.1155/2011/373141

18. Banerjee M., Kaur G., Whitlock B.D., Carew M.W., Le X.C., Leslie E.M. Multidrug resistance protein 1 (MRP1/ABCC1)-mediated cellular protection and transport of methylated arsenic metabolites differs between human cell lines. Drug Metab Dispos. 2018; 46 (8): 1096–105. DOI: https://doi.org/10.1124/dmd.117.079640

19. Arsenic. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain contaminants in food (WHO Technical Report Series; No. 959). World Health Organization, 2011: 21–37. ISBN 9789241209595, ISSN 0512-3054.

20. Patlolla A.K., Todorov T.I., Tchounwou P.B., van der Voet G., Centeno J.A. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats. Microchem J. 2012; 105: 101–7. DOI: https://doi.org/10.1016/j.microc.2012.08.013

21. Scientific opinion on arsenic in food. EFSA J. 2009; 7 (10): 1351. DOI: https://doi.org/10.2903/j.efsa.2009.1351

22. Cubaddaa F., Jacksonb B.P., Cottinghamc K.L., Van Horne Y.O., Kurzius-Spencer M. Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci Total Environ. 2017; 579: 1228–39. DOI: https://doi.org/10.1016/j.scitotenv.2016.11.108

23. Ratnaike R.N Acute and chronic arsenic toxicity. Postgrad Med J. 2003; 79 (933): 391–6. DOI: https://doi.org/10.1136/pmj.79.933.391

24. Sage A.P., Minatel B.C., Ng K.W., Stewart G.L., Dummer T.J.B., et al. Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget. 2017; 8 (15): 25 736–55. URL: http://www.impactjournals.com/oncotarget/

25. da Silva F.R, Borges dos S.C., e Silva V.P., Missassi G., Kiguti L.R.A., et al. The coadministration of N-acetylcysteine ameliorates the effects of arsenic trioxide on the male mouse genital system. Oxid Med Cell Longev. 2016; 2016: 4257498. DOI: http://dx.doi.org/10.1155/2016/4257498

26. Abernathy C.O., Liu Y.-P., Longfellow D., Beck B., Fowler B., et al. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect. 1999; 107 (7): 593–7. DOI: https://doi.org/10.1289/ehp.99107593

27. Jansen R.J., Mal T., Li J., Li J., Rakibuz-Zaman M., et al. Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol Biomarkers Prev. 2016; 25 (2): 381–90. DOI: https://doi.org/10.1158/1055-9965.EPI-15-0718

28. Tyler C.R., Allan A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep. 2014; 1 (2): 132–47. DOI: https://doi.org/10.1007/s40572-014-0012-1

29. Gamble M.V., Hall M.N. Relationship of creatinine and nutrition with arsenic metabolism. Environ Health Perspect. 2012; 120 (4): a145–6. DOI: https://doi.org/10.1289/ehp.1104807

30. Hudgens E.E., Drobna Z., He B., Le X.C., Styblo M., et al. Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. Environ Health. 2016; 15 (1): 62. DOI: https://doi.org/10.1186/s12940-016-0144-x

31. Bulka С.M., Mabila S.L., Lash J.P., Turyk M.Е., Argos M. Arsenic and obesity: a comparison of urine dilution adjustment methods. Environ Health Perspect. 2017; 125 (8): 087020. DOI: https://doi.org/10.1289/EHP1202

32. Wang A., Holladay S.D. Reproductive and developmental toxicity of arsenic in rodents: a review. Int J Toxicol. 2006; 25 (5): 319–31. DOI: https://doi.org/10.1080/10915810600840776

33. Some drinking-water disinfectants and contaminants, including arsenic. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. Lyon: International Agency for Research on Cancer, 2004; 84: 39-27035. ISBN 9283212843. ISSN 1017-1606.

34. Kim Ch.-Y., Han K.-H., Heol J.-D., Han E.S., Yum Y.N., et al. Toxicity screening of single dose of inorganic and organic arsenics on hematological and serum biochemical parameters in male cynomolgus monkeys. Taxiea Res. 2008; 24 (3): 219–25. DOI: https://doi.org/10.5487/TR.2008.24.3.219

35. Erickson R.J., Mount D.R., Highland T.L., Hockett J.R., Hoff D.J., et al. The effects of arsenic speciation on accumulation and toxicity of dietborne arsenic exposures to rainbow trout. Aquat Toxicol. 2019; 210: 227–41. DOI: https://doi.org/10.1016/j.aquatox.2019.03.001

36. Taylor V.F., Li Z., Sayarath V., Palys T.J., Morse K.R., et al. Distinct arsenic metabolites following seaweed consumption in humans. Sci Rep. 2017; 7 (1): 3920. DOI: https://doi.org/10.1038/s41598-017-03883-7

37. Xue X.-M., Ye J., Raber G., Rosen B.P, Francesconi K., et al. Identification of steps in the pathway of arsenosugar biosynthesis. Environ Sci Technol. 2019; 53 (2): 634–41. DOI: https://doi.org/10.1021/acs.est.8b04389

38. Sakurai T., Kaise T., Ochi T., Saitoh T., Matsubara C. Study of in vitro cytotoxicity of a water soluble оrganic arsenic compound, arsenosugar, in seaweed. Toxicology. 1997; 122 (3): 205–12. DOI: https://doi.org/10.1016/s0300-483x(97)00101-7

39. Teruaki S., Fujiwara K. Modulation of cell adhesion and viability of cultured murine bone marrow cells by arsenobetaine, a major organic arsenic compound in marine animals. Br J Pharmacol. 2001; 132 (1): 143–50. DOI: https://doi.org/10.1038/sj.bjp.0703790

40. Taylor V.F., Jackson B.P. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere. 2016; 163: 6–13. DOI: https://doi.org/10.1016/j.chemosphere.2016.08.004

41. Leffers L., Wehe Ch.A., Huwel S., Bartel M., Ebert F., et al. In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells. Metallomics. 2013; 5 (8): 1031–42. DOI: https://doi.org/10.1039/c3mt00039g

42. Glabonjat R.A., Blum J.S., Miller L.G., Webb S.M., Stolz J.F., et al. Arsenolipids in cultured picocystis strain ML and their occurrence in biota and sediment from Mono Lake, California. Life (Basel). 2020; 10 (6): 93. DOI: https://doi.org/10.3390/life10060093

43. Liu Q., Huang Ci., Li W., Fang Z., Le X.C. Discovery and identification of arsenolipids using a precursor-finder strategy and data-independent mass spectrometry. Environ Sci Technol. 2021; 55 (6): 3836–44. DOI: https://dx.doi.org/10.1021/acs.est.0c07175

44. Taleshi M.S., Seidler-Egdal R.K., Jensen K.B., Schwerdtle T., Francesconi K.A. Synthesis and characterization of arsenolipids: naturally occurring arsenic compounds in fish and algae. Organometallics. 2014; 33 (6): 1397–403. DOI: https://doi.org/10.1021/om4011092

45. Amayo K.O., Raab A., Krupp E.M., Gunnlaugsdottir H., Feldmann J. Novel identification of arsenolipids using chemical derivatizations in conjunction with RP-HPLC-ICPMS/ESMS. Anal Chem. 2013; 85 (19): 9321–7. DOI: https://doi.org/10.1021/ac4020935

46. Amayo K.O., Raab E., Krupp E.M., Michael T., Horsfall Jr, Feldmanna J. Arsenolipids show different profiles in muscle tissues of four commercial fish species. J Trace Elem Med Biol. 2014; 28 (2): 131–7. DOI: https://doi.org/10.1016/j.jtemb.2013.11.004

47. Francesconi K.A., Schwerdtle T. Fat-soluble arsenic-new lipids with a sting in their tail. Lipid Technol. 2016; 28 (5–6): 96–8. DOI: http://dx.doi.org/10.1002/lite.201600024

48. Taleshi M.S., Edmonds J.S., Goessler W., Ruiz-Chancho M-J., Raber G., et al. Arsenic-containing lipids are natural constituents of sashimi tuna. Environ Sci Technol. 2010; 44 (4): 1478–83. DOI: http://dx.doi.org/10.1021/es9030358

49. Taleshi M.S., Raber G., Edmonds J.S., Jensen K.B., Francesconi K.A. Arsenolipids in oil from blue whiting Micromesistius poutassou – evidence for arsenic-containing esters. Sci Rep. 2014; 4: 7492. DOI: http:/dx.doi.org/10.1038/srep07492

50. Viczek S.A., Jensen K.B., Francesconi K.A. Arsenic-containing phosphatidylcholines: a new group of arsenolipids discovered in herring caviar. Angew Chem Int Ed Engl. 2016; 55 (17): 5259–62. DOI: http://dx.doi.org/10.1002/anie.201512031

51. Meyer S., Matissek M., Müller S.M., Taleshi M.S., Ebert F., Francesconi K.A., et al. In vitro toxicological characterization of three arsenic-containing hydrocarbons. Metallomics. 2014; 6 (5): 1023–33. DOI: https://doi.org/10.1039/c4mt00061g

52. Bornhorst J., Ebert F., Meyer S., Ziemann V., Xiong C., Guttenberger N., et al. Toxicity of three types of arsenolipids: species-specific effects in Caenorhabditis elegans. Metallomics. 2020; 12 (5): 794–8. DOI: https://doi.org/10.1039/D0MT00039F

53. Braeuer S., Boroviсka J., Glasnov T., de la Cruz G.G., Jensen K.B., Goessler W. Homoarsenocholine – a novel arsenic compound detected for the first time in nature. Talanta. 2018; 188: 107–10. DOI: https://doi.org/10.1016/j.talanta.2018.05.065

54. Oya-Ohta Y., Kaise T., Ochi T. Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutat Res. 1996; 357 (1–2): 123–9. DOI: https://doi.org/10.1016/0027-5107(96)00092-9

55. Wu W.-K., Chen Ch.-Ch., Liu P.-Y., Panyod S., Liao B.-Y., Chen P.-C., et al. Identification of TMAO-producer phenotype and host–diet–gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut. 2019; 68 (8): 1439–49. DOI: https://doi.org/10.1136/gutjnl-2018-317155

56. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016; 165 (1): 111–24. DOI: https://doi.org/10.1016/j.cell.2016.02.011

57. Singh G.B., Zhang Y., Boini K.M., Koka S. High mobility group box 1 mediates TMAO-induced endothelial dysfunction. Int J Mol Sci. 2019; 20 (14): 3570. DOI: https://doi.org/10.3390/ijms20143570

58. Luvonga C., Rimmer C.A., Yu L.L., Lee S.B. Analytical methodologies for the determination of organoarsenicals in edible marine species: a review. J Agric Food Chem. 2020; 68 (7): 1910–34. DOI: https://doi.org/10.1021/acs.jafc.9b04525

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»