To the content
6 . 2021

The role of the gut microbiome in health and diet-related diseases

Abstract

In recent years, new data have been obtained on the participation of the organism-associated microbiota in the pathogenesis of many non-communicable diseases. However, these data are mostly multidirectional and require interpretation.

The aim - to highlight the role of the intestinal microbiome in the human body in health and some nutritional-dependent pathologies, taking into account modern scientific knowledge.

Material and methods. The analysis of domestic and foreign scientific literature in the field of studying the intestinal microbiome in humans and practical measures for its correction in the most common diet-related non-communicable diseases, using the Scopus, Web of Science, PubMed, Google Schoolar, eLibrary, Cyberleninka databases has been held. Results. The data on the significance and function of the intestinal microbiome for the human body in health and in nutrient-dependent diseases, with attention to publications containing information that meets the criteria of scientific evidence have been summarized. It has been shown that the intestinal microbiome plays a biologically significant role not only in digestion processes, but also in many metabolic processes and in the adaptive potential of the human organism. The role of the microbiome in the metabolism of lipids supplied with food, as well as its participation in the mechanisms of development of dys-lipidemias and metabolic syndrome in the case of dysbiotic disorders in the intestine, have been described.

Conclusion. Nowadays the importance of the intestinal microbiome as an integral factor in the vital functions of the organism that determines the development and maintenance of the immune system, digestive processes, and biochemical balance in humans in norm has been convincingly proven at all levels of numerous studies. However, the study of the effect of dysbiotic changes in the gut microbiota as a direct cause of the development of non-communicable diseases requires further research with a high level of evidence.

Keywords:gut microbiome, nutrition, diet-related non-communicable diseases, dysbiosis, lipid metabolism

Funding. The study was carried out at the expense of subsidies for the implementation of the state assignment.

Conflict of interest. The authors declare no conflicts of interest.

For citation: Kim N.V., Sheveleva S.A. The role of the gut microbiome in health and diet-related diseases. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (6): 31-41. DOI: https://doi.org/10.33029/0042-8833-2021-90-6-31-41 (in Russian)

References

1. Lazebnik L.B., Konev Yu.V. Colon Microbiota and constituents of metabolic syndrome. Eksperimental’naya i klinicheskaya gastoenterologiya. Elektronnoe izdanie [Experimental and Clinical Gastroenterology. eEdition]. 2014; 5 (105): 33–9. (in Russian)

2. Kuvaeva I.B. Metabolism of the body and intestinal microflora. Moscow: Meditsina, 1976: 228–48. (in Russian)

3. Fiebiger U., Bereswill S., Heimesaat M.M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol. 2016; 6 (4): 253–71. DOI: https://doi.org/10.1556/1886.2016.00036

4. Li X., Liu Ya., Martin J.W., Cui J.Yu., Lehmler H.-J. Nontarget reveals gut microbiome-dependent differences in the fecal PCB metabolite profiles of germ-free and conventional mice. Environ Pollut. 2021; 268 (A): 115726. DOI: https://doi.org/10.1016/j.envpol.2020.115726

5. Manca C., Boubertakh B., Leblanc N., Deschênes Th., Lacroix S., Martin C., et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res. 2020; 61 (1): 70–85. DOI: https://doi.org/10.1194/jlr.RA119000424

6. Blaut M. Composition and function of the gut microbiome. In: The Gut Microbiome in Health and Disease. Cham: Springer, 2018: 5–30. DOI: https://doi.org/10.1007/978-3-319-90545-7_2

7. Markova Yu.M., Sheveleva S.A., Kodentsova V.M., Vrzhesinskaya O.A. Colon lactoflora of rats with alimentary polyhypovitaminosis and modified fat component of diet. Voprosy pitaniia [Problems of Nutrition]. 2013; 82 (2): 66–9. (in Russian)

8. Vakhrushev Ya.M., Suchkova E.V., Lukashevich A.P. Non-alcoholic fatty liver disease and enteral insufficiency: comorbidity of their developmen. Terapevticheskiy arkhiv [Therapeutic Archive]. 2019; 91 (12): 84–9. DOI: https://doi.org/10.26442/00403660.2019.12.000134 (in Russian)

9. Leeming E.R., Johnson A.J., Spector T.D., Le Roy C.I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 2019; 11 (12): 2862. DOI: https://doi.org/10.3390/nu11122862

10. Singh R.K., Chang H.-W., Yan D, Lee K.M., Ucmak D., Wong K., et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017; 15 (1): 1–17. DOI: https://doi.org/10.1186/s12967-017-1175-y

11. Mansour S.R., Moustafa M.A.A., Saad B.M., Hamed R., Moustafa A.-R.A. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect. 2021; 41: 100845. DOI: https://doi.org/10.1016/j.nmni.2021.100845

12. Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361. DOI: https://doi.org/10.1136/bmj.k2179

13. Stewart Ch.J., Ajami N.J., O’Brien J.L., Hutchinson D.S., Smith D.P., Wong M.C., et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562: 583–8. DOI: https://doi.org/10.1038/s41586-018-0617-x

14. Cheng J.J. Ringel-Kulka T., Heikamp-de Jong I., Ringel Ye., Carroll I., de Vos W.M., et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 2016; 10: 1002–14. DOI: https://doi.org/10.1038/ismej.2015.177

15. Hollister E. B., Riehle K., Luna R. A., Weidler E. M., Rubio-Gonzales M., Mistretta T.-A., et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015; 3: 36. DOI: https://doi.org/10.1186/s40168-015-0101-x

16. Morozov A.M., Minakova Yu.E., Protchenko I.G. Influence of microflora on the synthesis of vitamins. Vestnik novykh meditsinskikh tekhnologiy. Elektronnoe izdanie [Bulletin of New Medical Technologies. eEdition]. 2019; (6). DOI: https://doi.org/10.24411/2075-4094-2019-16575 (in Russian)

17. Hansen A.K., Hansen C.H.F., Krych L., Nielsen D.S. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol. 2014; 20: 17 727–36. DOI: https://doi.org/10.3748/wjg.v20.i47.17727

18. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012; 336: 489–93. DOI: https://doi.org/10.1126/science.1219328

19. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gut microbes associated with obesity. Nature. 2006; 444: 1022–3. DOI: https://doi.org/10.1038/4441022a

20. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009; 1 (6): 6ra14. DOI: https://doi.org/10.1126/scitranslmed.3000322

21. Fujimura K.E., Sitarik A.R., Havstad S., Lin D.L., Levan S., Fadrosh D., et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016; 22: 1187–91. DOI: https://doi.org/10.1038/nm.4176

22. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500: 541–6. DOI: https://doi.org/10.1038/nature12506

23. Qin J., Li Yi., Cai Zh., Li Sh., Zhu J., Zhang F., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490: 55–60. DOI: https://doi.org/10.1038/nature11450

24. Cryan J.XF., O’Riordan K.J., Sandhu K., Peterson V., Dinan T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020; 19: 179–94. DOI: https://doi.org/10.1016/S1474-4422(19)30356-4

25. Sheveleva S.A., Kuvaeva I.B., Efimochkina N.R., Markova Yu.M., Prosyannikov M.Yu. Gut microbiome: from the reference of the norm to pathology. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 35–51. DOI: https://doi.org/10.24411/0042-8833-2020-10040 (in Russian)

26. Turnbaugh P.J., Bäckhed F., Fulton L., Gordon J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008; 3: 213–23. DOI: https://doi.org/10.1016/j.chom.2008.02.015

27. Sharon G., Cruz N.J., Kang D.-W., Gandal M.J., Wang B., Kim Y.-M., et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019; 177 (6): 1600–18.e17. DOI: https://doi.org/10.1016/j.cell.2019.05.004

28. Scharschmidt T.C., Vasquez K.S., Truong H.-A., Gearty S.V., Pauli M.L., Nosbaum A., et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015; 43 (5): 1011–21. DOI: https://doi.org/10.1016/j.immuni.2015.10/016

29. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004; 101: 15 718–23. DOI: https://doi.org/10.1073/pnas.0407076101

30. Uchimura Y. Fuhrer T., Li H., Lawson M.A., Zimmermann M., Yilmaz B., et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity. 2018; 49 (3): 545–59.e5. DOI: https://doi.org/10.1016/j.immuni.2018.08.004

31. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57–63. DOI: https://doi.org/10.1038/nature09922

32. Tang W.H.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013; 368: 1575–84. DOI: https://doi.org/10.1056/NEJMoa1109400

33. Gilbert J.A., Lynch S.V. Community ecology as a framework for human microbiome research. Nat. Med. 2019; 25: 884–9. DOI: https://doi.org/10.1038/s41591-019-0464-9

34. Eggesbo M., Moen B., Peddada S.H., Baird D., Rugtveit J., Midtvedt T., et al. Development of gut microbiota in infants not exposed to medical interventions. APMIS. 2011; 119 (1): 17–35. DOI: https://doi.org/10.1111/j.1600-0463.2010.02688.x

35. Sonnenburg J.L., Xu J., Leip D.D., CHen C.H.-H., Westover B.P., Weatherford J., et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005; 307 (5717): 1955–9. DOI: https://doi.org/10.1126/science.1109051

36. Stras S.F., Werner L., Toothaker J.M., Olaloye O.O., Oldham A.L., McCourt C.C., et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev Cell. 2019; 51: 357–73.e5. DOI: https://doi.org/10.1016/j.devcel.2019.09.008

37. Halkias J., Rackaityte E., Hillman S.L., Aran D., Mendoza V.F., Marshall L.R., et al. CD161 contributes to prenatal immune suppression of IFNγ-producing PLZF+ T cells. J Clin Invest. 2019; 129 (9): 3562–77. DOI: https://doi.org/10.1172/JCI125957

38. Schreurs R.R.C.E., Baumdick M.E., Sagebiel A.F., Kaufmann M., Mokry M., Klarenbeek P.L., et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity. 2019; 50 (2): 462–76.e8. DOI: https://doi.org/10.1016/j.immuni.2018.12.010

39. Li N., van Unen V., Abdelaal T., Guo N., Kasatskaya S.A., Ladell K., et al. Memory CD4+ T cells are generated in the human fetal intestine. Nat Immunol. 2019; 20: 301–12. DOI: https://doi.org/10.1038/s41590-018-0294-9

40. Kuvaeva I.B., Ladodo K.S. Microecological and immune disorders 19. in children: dietary correction. Moscow: Meditsina, 1991: 240 p. (in Russian)

41. Sitkin S.I., Tkachenko E.I., Vakhitov T.Ya. Filometabolicheskoe yadro mikrobioty kishechnika. Al’manakh klinicheskoy meditsiny [Almanac of Clinical Medicine]. 2015; (40): 12–34. DOI: https://elibrary.ru/item.asp?id=24210498 (in Russian)

42. Shenderov B.A. Metabiotics – novel prophylactic technology of diseases associated with microecological imbalance of human being. Vestnik vosstanovitel’noy meditsiny i reabilitatsii [Bulletin of Restorative Medicine and Rehabilitation]. 2017; 4 (80): 40–9. (in Russian)

43. Mills S., Stanton C., Lane J.A., Smith G.J., Ross R.P. Precision nutrition and the microbiome. Part I: current state of the science. Nutrients. 2019; 11 (4): 923. DOI: https://doi.org/10.3390/nu11040923

44. Leclercq S., Matamoros S., Cani P.D., Neyrinck A.M., Jamar F., Stärkel P., et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA. 2014; 111 (42): E4485–93. DOI: https://doi.org/10.1073/pnas.1415174111

45. Forsythe P., Bienenstock J., Kunze W.A. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med. Biol. 2014; 817: 115–33. DOI: https://doi.org/10.1007/978-1-4939-0897-4_5

46. Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 2012; 13: 701–12. DOI: https://doi.org/10.1038/nrn3346

47. Naseribafrouei A., Hestad K., Avershina E., Sekelja M., Linlokken A., Wilson R., et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014; 26 (8): 1155–62. DOI: https://doi.org/10.1111/nmo.12378

48. Schoeler M., Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Dis. 2019; 20: 461–72. DOI: https://doi.org/10.1007/s11154-019-09512-0

49. Zeisel S.H., Mar M.H., Howe J.C., Holden J.M. Concentrations of choline-containing compounds and betain in common foods. J Nutr. 2003; 133 (5): 1302–7. DOI: https://doi.org/10.1093/jn/133.5.1302

50. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19: 576–85. DOI: https://doi.org/10.1038/nm.3145

51. Wang Z., Tang W.H., Buffa J.A., Fu X., Britt E.B., Koeth R.A., et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014; 35 (14): 904–10. DOI: https://doi.org/10.1093/eurheartj/ehu002

52. Wilson A.S., Koller K.R., Ramaboli M.C., Nesengani L.T., Ocvirk S., Chen C., et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020; 65: 723–40. DOI: https://doi.org/10.1007/s10620-020-06112-w

53. Lv Zh., Shan X., Tu Q., Wang J., Chen J., Yang Yu. Ginkgolide B treatment regulated intestinal flora to improve high-fat diet induced atherosclerosis in ApoE−/− mice. Biomed Pharmacother. 2021; 134: 111100. DOI: https://doi.org/10.1016/j.biopha.2020.111100

54. Sanz Yo., Olivares M., Moya-Pérez Á., Agostoni C. Understanding the role of gut microbiome in metabolic disease risk. Pediatr Res. 2015; 77; 236–44. DOI: https://doi.org/10.1038/pr.2014.170

55. Carding S., Verbeke K., Vipond D.T., Corfe B.M., Owen L.J. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015; 26 (s2): 26191. DOI: http://doi.org/10.3402/mehd.v26.26191

56. Núñez-Sánchez M. A., Herisson F.M., Cluzel G.L., Caplice N.M. Metabolic syndrome and synbiotic targeting of the gut microbiome. Curr Opin Food Sci. 2021; 41: 60–9. DOI: http://doi.org/10.1016/j.cofs.2021.02.014

57. Matalygina O.A. Nutrition – intestinal microbiota – cardiovascular diseases. A new dimensionnull. Meditsina: teoriya i praktika [Medicine: Theory and Practice]. 2019; 4 (1): 271–6. URL: https://cyberleninka.ru/article/n/pitanie-kishechnaya-mikrobiota-serdechno-sosudistye-zabolevaniya-novoe-izmerenie (in Russian)

58. Lyapina M.V., Boychenko M.S., Zhilina A.S., Zhmurova V.A. Znachenie mikrobioty kishechnika v razvitii ateroskleroza i serdechno-sosudistyh zabolevanij. Universitetskaya meditsina Urala [University Medicine of the Urals]. 2019; 5 (2): 99–100 (in Russian)

59. Afineevskaya A.Yu., Mal’kov O.A., Govorukhina A.A. The role of intestinal microbiota in the pathogenesis of atherosclerosis and promising preventive measures (Review). Zhurnal mediko-biologicheskikh issledovaniy [Journal of Biomedical Research]. 2020; 8 (2): 184–93. URL: https://cyberleninka.ru/article/n/rol-kishechnoy-mikrobioty-v-patogeneze-ateroskleroza-i-perspektivnye-mery-profilaktiki-obzor (in Russian)

60. Philips C.A., Augustine Ph., Yerol P.K., Ramesh G.N., Ahamed R., Rajesh S., et al. Modulating the intestinal microbiota: therapeutic opportunities in liver disease. J Clin Transl Hepatol. 2020; 8 (1): 87–99. DOI: http://doi.org/10.14218/JCTH.2019.00035

61. Molina-Molina E., Baccetto R.L., Wang D.Q.-H., de Bari O., Krawczyk M., Portincasa P. Exercising the hepatobiliary-gut axis. The impact of physical activity performance. Eur J Clin Invest. 2018; 48 (8): e12958. DOI: http://doi.org/10/1111/eci.12958

62. Falk E. Pathogenesis of atherosclerosis // J. Am. Coll. Cardiol. 2006. Vol. 47, N 8. Suppl. P. C7–C12. DOI: http://doi.org/10.1016/j.jacc.2005.09.068

63. Kukharchuk V.V., Titov V.N. Cardiology Manual. In 4 vols. Vol. 3. Atherosclerosis and Dyslipidemias. Eds by E.I. Chazov. Moscow: Praktika, 2014: 15–58. (in Russian)

64. Yoo S.R., Kim Y.J., Park D.-Y., Jung U.-J., Jeon S.-M., Ahn Y.-T., et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity. 2013; 21 (12): 2571–8. DOI: https://doi.org/10.1002/oby.20428

65. An H.M., Park S.Y., Lee D.K., Kim J.R., Cha M.K., Lee S.W., et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011; 10: 116. DOI: https://doi.org/10.1186/1476-511x-10-116

66. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Chatelier E.L., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013; 500: 585–8. DOI: https://doi.org/10.1038/nature12480

67. Chatelier E.L., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500: 541–6. DOI: https://doi.org/10.1038/nature12506

68. Hoyles L., Fernández-Real J.-M., Federici M., Serino M., Abbott J., Charpentier J., et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018; 24: 1070–80. DOI: https://doi.org/10.1038/s41591-018-0061-3

69. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013; 155 (7): 1451–63. DOI: https://doi.org/10.1016/j.cell.2013.11.024

70. Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y.A., Geller L.T., et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020; 368 (6494): 973–80. DOI: https://doi.org/10.1126/science.aay9189

71. Romaní-Pérez M., Agusti A., Sanz Y. Innovation in microbiome-based strategies for promoting metabolic health. Curr Opin Clin Nutr Metab Care. 2017; 20 (6): 484–91. DOI: https://doi.org/10.1097/MCO.0000000000000419.

72. Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016; 535: 56–64. DOI: https://doi.org/10.1038/nature18846

73. Ouwehand A.C., ten Bruggencate S.J.M., Schonewille A.J., Alhoniemi E., Forssten S.D., Bovee-Oudenhoven I.M.J. Lactobacillus acidophilus supplementation in human subjects and their resistance to enterotoxigenic Escherichia coli infection. Br J Nutr. 2014; 111 (3): 465–73. DOI: https://doi.org/10.1017/S0007114513002547

74. Lynch M.D.J., Neufeld J.D. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015; 13: 217–29. DOI: https://doi.org/10.1038/nmicro3400

75. Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018; 174: 1406–23.e16. DOI: https://doi.org/10.1016/j.cell.2018.08.047

76. Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S., et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018; 174: 1388–405.e21. DOI: https://doi.org/10.1016/j.cell.2018.08.041

77. Rosshart S.P., Vassallo B.G., Angeletti D., Hutchinson D.S., Morgan A.P., Takeda K., et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017; 171 (5): 1015–21.e13. DOI: https://doi.org/10.1016/j.cell.2017.09.016

78. Rosshart S.P., Herz J., Vassallo B.G., Hunter A., Wall M.K., Badger J.H., et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019; 365 (6452): eaaw4361. DOI: https://doi.org/10.1126/science.aaw4361

79. Beura L.K. Hamilton S.E., Bi K., Schenkel J.M., Odumade O.A., Casey K.A., et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016; 532: 512–6. DOI: https://doi.org/10.1038/nature17655

80. Stein M.M., Hrusch C.L., Gozdz J., Igartua C., Pivniouk V., Murray S.E., et al. Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med. 2016; 375: 411–21. DOI: https://doi.org/10.1056/NEJMoa1508749

81. Dhakal S., Wang L., Antony L., Rank J., Bernardo P., Ghimire Sh., et al. Amish (rural) vs non-amish (urban) infant fecal microbiotas are highly diverse and their transplantation lead to differences in mucosal immune maturation in a humanized germfree piglet model. Front Immunol. 2019; 10: 1509. DOI: https://doi.org/10.3389/fimmu.2019.01509

82. Smits S.A. Leach J., Sonnenburg E.D., Gonzalez C.G., Lichtman J.S., Reid G., et al. Seasonal cycling in the gut microbiome of the Hadza huntergatherers of Tanzania. Science. 2017; 357: 802–6. DOI: https://doi.org/10.1126/science.aan4834

83. Keohane D.M., Ghosh T.Sh., Jeffery I.B., Molloy M.G., O’Toole P.W., Shanahan F. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat Med. 2020; 26: 1089–95. DOI: https://doi.org/10.1038/s41591-020-0963-8

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»