The role of nutrigenetics and nutrigenomics in the prophylaxis of chronic non-communicable diseases

Abstract

Over the past several decades there has been an increase in the number of chronic noncommunicable diseases worldwide largely due to changes in diet and lifestyle, as well as exposure to adverse environmental factors. The so-called omics technologies (genomic, proteomic, metabolomic and transcriptomic) are used as tools for comprehensive analysis and monitoring of human health. Currently, genomic and post-genomic technologies are used to study the effects of various nutrients on human health.

The purpose of the review was to summarize and analyze modern omics technologies used in the prevention of non-communicable diseases associated with human dietary habits.

Material and methods. The literature search was carried out using PubMed, eLibrary, ResearchGate and ScienceDaily databases using the keywords “nutrigenetics”, “nutri-genomics”, “SNP”, as well as the names of specific factors, genes and diseases.

Results. The review provides up-to-date information on the role of knowledge of nutri-genetics and nutrigenomics in the prevention of chronic non-communicable diseases. Examples of the influence of specific single-nucleotide polymorphisms and genetic variations on various aspects of nutrition are given, from which recommendations for correcting the diet of carriers of these alleles to reduce the risk of cardiovascular diseases, type 2 diabetes mellitus, and obesity follow. Examples of nutrient influence on gene expression are also given and some genetic markers of metabolic disorders which can lead to diseases such as type 2 diabetes mellitus, obesity, inflammatory diseases of the colon, cardiovascular and neurodegenerative diseases, cancer are listed. Recommendations are given on the practical use of the knowledge gained during nutrigenomic studies on the effect of nutrient intake on the risk of non-communicable diseases for their prevention.

Conclusion. The practical use of omics technologies can provide a more effective prevention of non-communicable diseases, contributing to an increase in the quality of life and the preservation of labor longevity of the population.

Keywords:nutrigenetics; nutrigenomics; nutrients; non-communicable diseases; omix technologies

Funding. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

For citation: Mazilov S.I., Mikerov A.N., Komleva N.E., Zaikina I.V. The role of nutrigenetics and nutrigenomics in the prophylaxis of chronic noncommunicable diseases. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (1): 9-18. DOI: https://doi.org/10.33029/0042-8833-2022-91-1-9-18 (in Russian)

References

1. Ordovas J.M., Ferguson L.R., Tai E.S., Mathers J.C. Personalised nutrition and health. BMJ. 2018; (361): bmj.k2173. DOI: https://doi.org/10.1136/bmj.k2173

2. Fenech M., El-Sohemy A., Cahill L., Ferguson L.R., French T.A., Tai E.S. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics. 2011; 4 (2): 69–89. DOI: https://doi.org/10.1159/000327772

3. Kruglyak L., Nickerson D.A. Variation is the spice of life. Nat Genet. 2001; 27 (3): 234–6. DOI: https://doi.org/10.1038/85776

4. Ortega-Azorín C., Sorlí J.V., Asensio E.M., Coltell O, Martínez-González M.Á., Salas-Salvadó J., et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012; 11: 137. DOI: https://doi.org/10.1186/1475-2840-11-137

5. Guest N.S., Horne J., Vanderhout S.M., El-Sohemy A. Sport nutrigenomics: personalized nutrition for athletic performance. Front Nutr. 2019; 6: e8. DOI: https://doi.org/10.3389/fnut.2019.00008

6. Crovesy L., Rosado E.L. Interaction between genes involved in energy intake regulation and diet in obesity. Nutrition. 2019; 67–8: e110547. DOI: https://doi.org/10.1016/j.nut.2019.06.027

7. Gharooi Ahangar O., Javanrouh N., Daneshpour M.S., Barzin M., Valizadeh M., Azizi F., et al. Genetic markers and continuity of healthy metabolic status: Tehran cardio-metabolic genetic study (TCGS). Scientific Reports. 2020; 10: e13600. DOI: https://doi.org/10.1038/s41598-020-70627-5

8. Dougkas A., Yaqoob P., Givens D.I., Reynolds C.K., Minihane A.M. The impact of obesity-related SNP on appetite and energy intake. Br J Nutr. 2013; 110 (6): 1151–6. DOI: https://doi.org/10.1017/S0007114513000147

9. Goltz F.R., Thackray A.E., Varela-Mato V., King J.A., Dorling J.L., Dowejko M., et al. Exploration of associations between the FTO rs9939609 genotype, fasting and postprandial appetite-related hormones and perceived appetite in healthy men and women. Appetite. 2019; 142: e104368. DOI: https://doi.org/10.1016/j.appet.2019.104368

10. Huang T., Zheng Y., Hruby A., Williamson D.A., Bray G.A, Shen Y., et al. Dietary protein modifies the effect of the MC4R genotype on 2-year changes in appetite and food craving: the POUNDS lost trial. J Nutr. 2017; 147: 439–44. DOI: https://doi.org/10.3945/jn.116.242958

11. Chamoun E., Hutchinson J.M., Krystia O., Mirotta J.A., Mutch D.M., Buchholz A.C., et al.; Guelph Family Health Study. single nucleotide polymorphisms in taste receptor genes are associated with snacking patterns of preschool-aged children in the Guelph Family Health Study: a pilot study. Nutrients. 2018; 10 (2): e153. DOI: https://doi.org/10.3390/nu10020153

12. Zhong V.W., Kuang A., Danning R.D., Kraft P., van Dam R.M., Chasman D.I., et al. A genome-wide association study of bitter and sweet beverage consumption. Hum Mol Genet. 2019; 28 (14): 2449–57. DOI: https://doi.org/10.1093/hmg/ddz061

13. Sikalidis A.K. From food for survival to food for personalized optimal health: a historical perspective of how food and nutrition gave rise to nutrigenomics. J Am Coll Nutr. 2019; 38 (1): 84–95. DOI: https://doi.org/10.1080/07315724.2018.1481797

14. Bland J.S. The evolution of personalized nutrition – from Addis, Pauling, and RJ Williams to the future. Integr Med (Encinitas). 2019; 18 (6): 10–3.

15. Mullins V.A., Bresette W., Johnstone L., Hallmark B., Chilton F.H. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”? Nutrients. 2020; 12 (10): e3118. DOI: https://doi.org/10.3390/nu12103118

16. Grimaldi K.A., van Ommen B., Ordovas J.M., Parnell L.D., Mathers J.C., Bendik I., et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr. 2017; 12: e35. DOI: https://doi.org/10.1186/s12263-017-0584-0

17. Meng H., Huang S., Yang Y., He X., Fei L., Xing Y. Association between MTHFR polymorphisms and the risk of essential hypertension: an updated meta-analysis. Front Genet. 2021; 12: e698590. DOI: https://doi.org/10.3389/fgene.2021.698590

18. Dai C., Fei Y., Li J., Shi Y., Yang X. A novel review of homocysteine and pregnancy complications. Biomed Res Int. 2021; 2021: e6652231. DOI: https://doi.org/10.1155/2021/6652231

19. Mtiraoui N., Ezzidi I., Chaieb M., Marmouche H., Aouni Z., Chaieb A., et al. MTHFR C677T and A1298C gene polymorphisms and hyperhomocysteinemia as risk factors of diabetic nephropathy in type 2 diabetes patients. Diabetes Res. Clin. Pract. 2007; 75 (1): 99–106. DOI: https://doi.org/10.1016/j.diabres.2006.05.018

20. Zhang L., Sun L., Wei T. Correlation between MTHFR gene polymorphism and homocysteine levels for prognosis in patients with pregnancy-induced hypertension. Am J Transl Res. 2021; 13 (7): 8253–61.

21. Hobbs C.A., Cleves M.A. Melnyk S., Zhao W., James S.J. Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr. 2005; 81 (1): 147–53. DOI: https://doi.org/10.1093/ajcn/81.1.147

22. Selhub J., Jacques P.F., Wilson P.W., Rush D., Rosenberg I.H. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc. 1993; 270: 2693–8. DOI: https://doi.org/10.1001/jama.1993.03510220049033

23. McGully K.S. Homocysteine and vascular disease. Nat Med. 1996; 2: 386–9.

24. DiNicolantonio J.J., O'Keefe J.H. Effects of dietary fats on blood lipids: a review of direct comparison trials. Open Heart. 2018; 5 (2): e000871. DOI: https://doi.org/10.1136/openhrt-2018-000871

25. Adams J.N., Raffield L.M., Freedman B.I., Langefeld C.D., Ng M.C., Carr J.J., et al. Analysis of common and coding variants with cardiovascular disease in the Diabetes Heart Study. Cardiovasc Diabetol. 2014; 13: e77. DOI: https://doi.org/10.1186/1475-2840-13-77

26. Li H., Xu W., Jin J., Zhu X., Yang Y., Han D., et al. Effects of dietary carbohydrate and lipid concentrations on growth performance, feed utilization, glucose, and lipid metabolism in two strains of gibel carp. Front Vet Sci. 2019; 6: e165. DOI: https://doi.org/10.3389/fvets.2019.00165

27. Abdullah M.M.H., Jones P.J.H., Eck P.K. Nutrigenetics of cholesterol metabolism: observational and dietary intervention studies in the postgenomic era. Nutr Rev. 2015; 73 (8): 523–43. DOI: https://doi.org/10.1093/nutrit/nuv016

28. Abdullah M.M.H, Vazquez-Vidal I., Baer D.J., House J.D., Jones P.J.H., Desmarchelier C. Common genetic variations involved in the inter-individual variability of circulating cholesterol concentrations in response to diets: a narrative review of recent evidence. Nutrients. 2021; 13 (2): e695. DOI: https://doi.org/10.3390/nu13020695

29. Abdullah M.M.H, Eck P.K., Couture P., Lamarche B., Jones P.J.H. The combination of single nucleotide polymorphisms rs6720173 (ABCG5), rs3808607 (CYP7A1), and rs760241 (DHCR7) is associated with differing serum cholesterol responses to dairy consumption. Appl Physiol Nutr Metab. 2018; 43 (10): 1090–3. DOI: https://doi.org/10.1139/apnm-2018-0085

30. Cholesterol Treatment Trialists' (CTT) collaborators, Mihaylova B., Emberson J., Blackwell L., Keech A., Simes J., Barnes E.H., et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012; 380 (9841): 581–590. DOI: https://doi.org/10.1016/S0140-6736(12)60367-5

31. Dedov I.I., Shestakova M.V., Galstyan G.R. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Saharnyj diabet [Diabetes Mellitus]. 2016; 19 (2): 104–12. DOI: https://doi.org/10.14341/DM2004116-17 (in Russian)

32. Howlader M, Sultana M.I., Akter F., Hossain M.M. Adiponectin gene polymorphisms associated with diabetes mellitus: a descriptive review. Heliyon. 2021; 7 (8): e07851. DOI: https://doi.org/10.1016/j.heliyon.2021.e07851

33. Ortega Á., Berná G., Rojas A., Martín F., Soria B. Gene-Diet Interactions in type 2 diabetes: the chicken and egg debate. Int J Mol Sci. 2017; 18 (6): e1188. DOI: https://doi.org/10.3390/ijms18061188

34. Florez J.C. The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care. 2007; 10 (4): 391–6. DOI: https://doi.org/10.1097/MCO.0b013e3281e2c9be

35. Cornelis M.C., Qi L., Kraft P., Hu F.B. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. Am J Clin Nutr. 2009; 89 (4): 1256–62. DOI: https://doi.org/10.3945/ajcn.2008.27058

36. Livingstone K.M., Celis-Morales C., Lara J., Ashor A.W., Lovegrove J.A., Martinez J.A., et al. Associations between FTO genotype and total energy and macronutrient intake in adults: a systematic review and meta-analysis. Obes Rev. 2015; 16: 666–78. DOI: https://doi.org/10.1111/obr.12290

37. Arkadianos I., Valdes A.M., Marinos E., Florou A., Gill R.D., Grimaldi K.A. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J. 2007; 6: 29. DOI: https://doi.org/10.1186/1475-2891-6-29

38. Mathers J.C. Nutrigenomics in the modern era. Proc Nutr Soc. 2017; 76 (3): 265–75. DOI: https://doi.org/10.1017/S002966511600080X

39. Carlberg C., Ulven S.M., Molnár F. Nutrigenomics. Springer, 2016: 222 p. ISBN 978-3-319-30415-1 (eBook). DOI: https://doi.org/10.1007/978-3-319-30415-1

40. Peregrin T. The new frontier of nutrition science: nutrigenomics. J Am Diet Assoc. 2001; 101 (11): e1306. DOI: https://doi.org/10.1016/S0002-8223(01)00309-1

41. Van Ommen B., Stierum R. Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr Opin Biotechnol. 2002; 13 (5): 517–21. DOI: https://doi.org/10.1016/s0958-1669(02)00349-x

42. Affolter M., Raymond F., Kussmann M. Omics in nutrition and health research. In: Mine Y., Miyashita K., Shahidi F. (Eds). Nutrigenomics and proteomics in health and disease – Food factors and gene interactions. USA: Wiley Blackwell Edition, IA. 2009: 11–29. ISBN: 978-0-813-80033-2.

43. Berná G., Oliveras-López M.J, Jurado-Ruíz E., Tejedo J., Bedoya F., Soria B., et al. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients. 2014; 6 (11): 5338–69. DOI: https://doi.org/10.3390/nu6115338

44. Mead M.N. Nutrigenomics – the genome-food interface. Environ Health Perspect. 2007; 115 (12): 582–9. DOI: https://doi.org/10.1289/ehp.115-a582

45. Schvartzman J.M., Thompson C.B., Finley L. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol. 2018; 217 (7): 2247–59. DOI: https://doi.org/10.1083/jcb.201803061

46. Burgos-Barragan G., Wit N., Meiser J., Dingler F.A., Pietzke M., Mulderrig L., et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature. 2017; 548 (7669): 549–54. DOI: https://doi.org/10.1038/nature23481

47. Chen F., Sha M., Wang Y., Wu T., Shan W., Liu J., et al. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models. Diabetologia. 2016; 59 (2): 316–24. DOI: https://doi.org/10.1007/s00125-015-3805-3

48. Li Y., Liu Y., Chen G. Vitamin A status affects the plasma parameters and regulation of hepatic genes in streptozotocin-induced diabetic rats. Biochimie. 2017; 137: 1–11. DOI: https://doi.org/10.1016/j.biochi.2017.02.012

49. Ruan Y., Lin N., Ma Q., Chen R., Zhang Z., Wen W., et al. Circulating LncRNAs analysis in patients with type 2 diabetes reveals novel genes influencing glucose metabolism and islet β-cell function. Cell Physiol Biochem. 2018; 46 (1): 335–50. DOI: https://doi.org/10.1159/000488434

50. Ito T., Hanahata Y., Kine K., Murakami S., Schaffer S.W. Tissue taurine depletion induces profibrotic pattern of gene expression and causes aging-related cardiac fibrosis in heart in mice. Biol Pharm Bull. 2018; 41 (10): 1561–6. DOI: https://doi.org/10.1248/bpb.b18-00217

51. Kjalarsdottir L., Tersey S.A., Vishwanath M., Chuang J.C., Posner B.A., Mirmira R.G., et al. 1,25-Dihydroxyvitamin D3 enhances glucose-stimulated insulin secretion in mouse and human islets: a role for transcriptional regulation of voltage-gated calcium channels by the vitamin D receptor. J Steroid Biochem Mol Biol. 2019; 185: 17–26. DOI: https://doi.org/10.1016/j.jsbmb.2018.07.004

52. Pepe F., Pagotto S., Soliman S., Rossi C., Lanuti P., Braconi C., et al. Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells. Oncogenesis. 2017; 6 (5): e328. DOI: https://doi.org/10.1038/oncsis.2017.35

53. Ferland-McCollough D., Fernandez-Twinn D.S., Cannell I.G., David H., Warner M., Vaag A.A., et al. Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ. 2012; 19 (6): 1003–12. DOI: https://doi.org/10.1038/cdd.2011.183

54. de Toro-Martín J., Arsenault B.J., Després J.P., Vohl M.C. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients. 2017; 9 (8): e913. DOI: https://doi.org/10.3390/nu9080913

55. Kang R., Kim M., Chae J.S., Lee S.H., Lee J.H. Consumption of whole grains and legumes modulates the genetic effect of the APOA5-1131C variant on changes in triglyceride and apolipoprotein A–V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes. Trials. 2014; 15: e100. DOI: https://doi.org/10.1186/1745-6215-15-100

56. Li B., Hu Y., Wang D., Wu D., Jin L., Wang X. Influences of APOA5 variants on plasma triglyceride levels in Uyghur population. PLoS One. 2014; 9 (10): e110258. DOI: https://doi.org/10.1371/journal.pone.0110258

57. Shamim N., Gupta A., Paul V., Vida E. Nutritional genomics: a review. The Pharma Innovation Journal. 2017; 6 (4): 17–20.

58. Moehlecke M., Canani L.H., Silva L.O., Trindade M.R., Friedman R., Leitão C.B. Determinants of body weight regulation in humans. Arch Endocrinol Metab. 2016; 60 (2): 152–62. DOI: https://doi.org/10.1590/2359-3997000000129

59. Dalmel L., Vargas T., Molina R.A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis. 2012; 33 (15): 2266–89.

60. Cruz E.P., Mier G.M., Rivera A.Z. Nutritional genomics: prospects for the future // Journal of Endocrinogy and Nutrition. 2005; 13 (4); 190–6.

61. Ferguson L. Nutrigenetics, nutrigenomics and inflammatory bowel diseases. Expert Rev Clin Immunol. 2013; 9: 717–26.

62. Gentschew L., Bishop K.S., Han D.Y., et al. Selenium, selenoprotein genes and Crohn's disease in a case–control population from Auckland, New Zealand. Nutrients. 2012; 4: 1247–59.

63. Nuno N.B., Heuberger R. Nutrigenetic associations with cardiovascular disease. Rev Cardiovasc Med. 2014; 15: 217–25.

64. Heidari M.M., Khatami M., Hadadzadeh M., Kazemi M., Mahamed S., Malekzadeh P., et al. Polymorphisms in NOS3, MTHFR, APOB and TNF-α genes and risk of coronary atherosclerotic lesions in Iranian patients. Res Cardiovasc Med. 2015; 5 (1): e29134. DOI: https://doi.org/10.5812/cardiovascmed.29134

65. Lin J., Yang R., Tarr P.T., et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell. 2005; 120 (2): 261–73.

66. Adibhatla R.M., Hatcher J.F. Altered lipid metabolism in brain injury and disorders. Subcell Biochem. 2008; 49: 241–68. DOI: https://doi.org/10.1007/978-1-4020-8831-5_9

67. Sharon R., Bar-Joseph I., Frosch M.P., Walsh D.M., Hamilton J.A., Selkoe D.J. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron. 2003; 37: 583–95. DOI: https://doi.org/10.1016/s0896-6273(03)00024-2

68. Brennan S.F., Woodside J.V., Lunny P.M., et al. Dietary fat and breast cancer mortality: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2017; 57 (10): 1999–2008.

69. Li C., Yang L., Zhang D., Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016; 36 (7): 627–35. DOI: https://doi.org/10.1016/j.nutres.2016.04.009

70. Chlebowski R.T., Blackburn G.L., Thomson C.A., et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women‟s Intervention Nutrition Study. J Natl Cancer Inst. 2006; 98 (24): 1767–76.

71. Löf, M., Sandin S., Lagiou P., et al. Dietary fat and breast cancer risk in the Swedish women’s lifestyle and health cohort. Br J Cancer. 2007; 97 (11): 1570–6.

72. Almendro V., Gascón P., Nutrigenómica y cancer. Monografías Humanitas. 2012; 9: 139–52.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»