Discussion of the immunomorphological role of interactions between mast cells and Helicobacter pylori in the gastric mucosa

Abstract

Helicobacter pylori induced gastritis accounts for 70% of cases in the structure of this pathology. Features of the long-term inflammatory reaction of the mucous membrane are directly related to the mechanisms of bacterial pathogenicity, and features of immunogenesis within narrow limits of the specific tissue microenvironment of organ structures. Mast cells appear to be one of the key players (promoters) in the regulation of the inflammatory mediator cascade and the formation of cytokine-induced expression. Possessing a wide arsenal of biologically active substances, mast cells are able to participate in the formation of the immune response and resistance of the gastric mucosa, modulating both pro- and anti-inflammatory effects. The antigen-presenting features of mast cells are of interest in terms of interaction with H. pylori and induction of mucosa bacterial colonization.

The aim of study was to assess the mast cell tryptase profile of the gastric mucosa in the immunopathogenesis of H. pylori-associated inflammation.

Material and methods. The study included 19 biopsies of the gastric mucosa with unknown status of H. pylori infection. Microslides were stained with hematoxylin and eosin, and Giemsa’s dye for plain microscopy. H. pylori infection of the gastric mucosa was detected using the immunohistochemical method. Using double immunofluorescent labeling, localization of tryptase-positive mast cells and H. pylori strains was detected.

Results. In patients infected with H. pylori (n=12), there was a significant increase in the number of tryptase-positive mast cells (177.99±30.55 vs 88.58±11.49; p<0.05) with activation of secretory pathways and release of protease into the extracellular matrix of the gastric mucosa. The quantitative parameters of mast cells in the group of patients with an undetected pathogen and signs of a chronic inflammation of the gastric mucosa were statistically significantly lower than in the group of infected patients. Co-localization of tryptase-positive mast cells and H. pylori strains (with the formation of areas of large free-lying granule accumulation around the glands with pronounced degree of H. pylori contamination) was detected in gastrobiopsy specimens, the fact evidencing their close involvement in the development of inflammatory reactions of the gastric mucosa.

Conclusion. The study demonstrated the features of mast cells and H. pylori interaction revealing previously unknown aspects of gastritis pathophysiology. The data obtained contribute a valuable insight to choose a treatment strategy for H. pylori-associated gastritis.

Keywords:Helicobacter pylori; stomach; gastritis; mast cells; tryptase

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Shishkina V.V., Klochkova S.V., Alexeeva NT., Samodurova N.Yu., Nikityuk D.B. Discussion of the immunomorphological role of interactions between mast cells and Helicobacter pylori in the gastric mucosa. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (1): 98-108. DOI: https://doi.org/10.33029/0042-8833-2022-91-1-98-108 (in Russian)

References

1. WHO report on cancer: setting priorities, investing wisely and providing care for all. Geneva: World Health Organization; 2020.

2. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68 (6): 394–424. DOI: https://doi.org/10.3322/caac.21492

3. Tsukamoto T., Nakagawa M., Kiriyama Y., Toyoda T., Cao X. Prevention of gastric cancer: eradication of Helicobacter pylori and beyond. Int J Mol. Sci. 2017; 18 (8): 1699. DOI: https://doi.org/10.3390/ijms18081699

4. Santos M.L.C., de Brito B.B., da Silva F.A.F., Sampaio M.M., Marques H.S., Oliveira E. Silva N., et al. Helicobacter pylori infection: beyond gastric manifestations. World J Gastroenterol. 2020; 26 (28): 4076–93. DOI: https://doi.org/10.3748/wjg.v26.i28.4076

5. Baj J., Forma A., Sitarz M., Portincasa P., Garruti G., Krasowska D., et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 2021; 10 (1): 27. DOI: https://doi.org/10.3390/cells10010027

6. Sharndama H.C., Mba I.E. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 2022. DOI: https://doi.org/10.1007/s42770-021-00675-0

7. Samodurova N., Mamchik N., Istomin A., Klepikov O., Sokolenko G. Determination of risk territories by the level of alimentary-dependent diseases, taking into account the regional characteristics of the population's nutrition structure. Vestnik Rossijskogo gosudarstvennogo medicinskogo universiteta [Bulletin of the Russian State Medical University]. 2018; 5: 42–7. (in Russian)

8. Konturek J. Discovery by Jaworski of Helicobacter pylori and its pathogenetic role in peptic ulcer, gastritis and gastric cancer. J Physiol Pharmacol. 2003; 54: 23–41.

9. Molnar B., Galamb O., Sipos F., Leiszter K., Tulassay Z. Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig Dis. 2010; 28: 604–8. DOI: https://doi.org/10.1159/000320060

10. Nozaki K., Shimizu N., Inada K., Tsukamoto T., Inoue M., Kumagai T., et al. Synergistic promoting effects of Helicobacter pylori infection and high-salt diet on gastric carcinogenesis in Mongolian gerbils. Jpn J Cancer Res. 2002; 93 (10): 1083–9. DOI: https://doi.org/10.1111/j.1349-7006.2002.tb01209.x

11. Sabbagh P., Javanian M., Koppolu V., Vasigala V.R., Ebrahimpour S. Helicobacter pylori infection in children: an overview of diagnostic methods. Eur J Clin Microbiol Infect Dis. 2019; 38: 1035–45. DOI: https://doi.org/10.1007/s10096-019-03502-5

12. Velin D., Michetti P. Immunology of Helicobacter pylori infection. Digestion. 2006; 73 (2-3): 116–23.

13. Ieni A., Barresi V., Rigoli L., Fedele F., Tuccari G., Caruso R. Morphological and cellular features of innate immune reaction in Helicobacter pylori gastritis: a brief review. Int J Mol Sci. 2016; 17 (1):109. DOI: https://doi.org/10.3390/ijms17010109

14. Atiakshin D., Samoilova V., Buchwalow I., Boecker W., Tiemann M. Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol. 2017; 147 (6): 683–94. DOI: https://doi.org/10.1007/s00418-017-1547-7

15. Mukai K., Tsai M., Saito H., Galli S. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018; 282 (1): 121–50. DOI: https://doi.org/10.1111/imr.12634

16. Zhang Z., Kurashima Y. Two sides of the coin: mast cells as a key regulator of allergy and acute. Chronic Inflammation Cells. 2021; 10 (7): 161–5. DOI: https://doi.org/10.3390/cells10071615

17. Atiakshin D., Buchwalow I., Samoilova V., Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018; 149 (5): 461–77. DOI: https://doi.org/10.1007/s00418-018-1659-8

18. Overed-Sayer C., Rapley L., Mustelin T., Clarke D. Are mast cells instrumental for fibrotic diseases? Front Pharmacol. 2014; 4: 174. DOI: https://doi.org/10.3389/fphar.2013.00174

19. Tan R., Sun H.Q., Zhang W., Yuan H., Li B., Yan H., et al. A 21-35 kDa mixed protein component from Helicobacter pylori activates mast cells effectively in chronic spontaneous urticaria. Helicobacter. 2016; 21 (6): 565–74.

20. Alekseeva N.T. Participation of the cellular component in wound regeneration. Zhurnal anatomii i gistopatologii [Journal of Anatomy and Histopathology]. 2014; 3 (1): 9–15. (in Russian)

21. Levi-Schaffer F., Piliponsky A.M. Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol. 2003; 24: 158–61. DOI: https://doi.org/10.1016/S1471-4906(03)00058-9

22. Atiakshin D., Buchwalow I., Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020; 154 (1): 21–40. DOI: https://doi.org/10.1007/s00418-020-01875-9

23. Atiakshin D.A., Shishkina V.V., Gerasimova O.A., Meshkova V.Y., Samodurova N.Y., Samoilenko T.V., et al. Combined histochemical approach in assessing tryptase expression in the mast cell population. Acta Histochem. 2021; 123 (4): 15–7. DOI: https://doi.org/10.1016/j.acthis.2021.15171

24. Elieh Ali Komi D., Kuebler W.M. Significance of mast cell formed extracellular traps in microbial defense. Clin Rev Allergy Immunol. 2022; 62 (1): 160–79. DOI: https://doi.org/10.1007/s12016-021-08861-6

25. Buchwalow I., Boecker W. Immunohistochemistry: basics and methods. 1st ed. Springer; Berlin/Heidelberg, Germany; 2010: 153 p. ISBN 978-3-642-42502-8. DOI: https://doi.org/10.1007/978-3-642-04609-4

26. Kononov A.V. The role of the pathological report “Chronic gastritis” in the system of personified cancer prevention. Rossijskij zhurnal gastrojenterologii, gepatologii, koloproktologii [Russian Journal of Gastroenterology, Hepatology, Coloproctology]. 2018; 28 (4): 91–101. DOI: https://doi.org/10.22416/1382-4376-2018-28-4-91-101 (in Russian)

27. Shigeto K., Kawaguchi T., Koya S., Hirota K., Tanaka T., Nagasu S., et al. Profiles combining muscle atrophy and neutrophil-to-lymphocyte ratio are associated with prognosis of patients with stage IV gastric cancer. Nutrients. 2020; 12 (6): 1884. DOI: https://doi.org/10.3390/nu12061884

28. Zaib S., Tayyab Younas M., Zaraei S., Khan I., Anbar H., El-Gamal M. Discovery of urease inhibitory effect of sulfamate derivatives: Biological and computational studies. Bioorg Chem. 2021; 119: 105–545.

29. Shishkina V.V., Atjakshin D.A. Mast cells and collagen fibrillogenesis under zero gravity. Zhurnal anatomii i gistopatologii [Journal of Anatomy and Histopathology]. 2019; 8 (3): 79–88. DOI: https://doi.org/10.18499/2225-7357-2019-8-3-79-88 (in Russian)

30. Lv Y.P., Teng Y.S., Mao F.Y., Peng L.S., Zhang J.Y., Cheng P., et al. Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis. Cell Death Dis 2018; 9 (5): 457. DOI: https://doi.org/10.1038/s41419-018-0493-1

31. Micu G., Stăniceanu F., Sticlaru L., Popp C., Bastian A., Gramadă E., et al. Density of tryptase-positive mast cells correlated with the presence of H. pylori in gastric neoplasia. Rom J Intern Med. 2015; 53 (3): 227–36. DOI: https://doi.org/10.1515/rjim-2015-0030

32. Caruso R., Parisi A., Crisafulli C., Bonanno A., Lucian R., Branca G., et al. Intraepithelial infiltration by mast cells in human Helicobacter pylori active gastritis. Ultrastruct Pathol. 2011; 35 (6): 251–5. DOI: https://doi.org/10.1080/21505594.2015.1043505

33. Grabar V.F. Evaluation of the relationship between nutrition and health of the special contingent. Hygiene and sanitation [Gigiena i Sanitaria]. 2008; 4: 49–52.

34. Mao Q.Q., Xu X.Y., Shang A., Gan R.Y., Wu D.T., Atanasov A.G., et al. Phytochemicals for the Prevention and treatment of gastric cancer: effects and mechanisms. Int J Mol Sci. 2020; 21 (2): 570. DOI: https://doi.org/10.3390/ijms21020570

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»