Should we prescribe low-protein diet for geriatric patient with chronic kidney disease?

Abstract

There are no clear dietary recommendations for patients over 70 years of age, while stages 3–5 of chronic kidney disease (CKD) and protein-energy wasting (PEW) is common among this category of patients. Nutritional status is known to be one of the significant factors influencing the prognosis of patients receiving renal replacement therapy.

The aim of the research was the analysis of the mechanisms of PEW, methods for assessing the nutritional status and effectiveness of diets with different protein content in patients with CKD based on literature data.

Material and methods. The research material was the scientific literature presented in the domestic and international (eLIBRARY, PubMed, Google Scholar) databases, as well as clinical recommendations for the management of geriatric patients with CKD, dietary recommendations for patients with anorexia and other conditions.

Results. The studies devoted to the mechanisms of PEW were analyzed. One of the leading causes of this condition is anorexia, in the pathogenesis of which uremic toxins, inflammation and hormonal disorders are involved (hormones such as gastrin, cholecystokinin, leptin, insulin, testosterone and others may be involved in the pathogenesis). A number of studies have shown that limiting protein to 0.6 g/kg day could significantly reduce uremic dyspepsia risk and slow CKD progression. At the same time, several researchers gave data on the ineffectiveness of a low-protein diet in patients with CKD and diabetes mellitus and a significant risk of malnutrition. Subjective global assessment, the mini nutrition assessment and the geriatric nutritional risk index can be distinguished among the methods of assessing nutritional status.

Conclusion. Research data on the effectiveness of a low-protein diet in elderly patients with stage 3B–5 CKD are contradictory. PEW in CKD is common and largely determines survival; the mechanism of PEW is complex. The study of the optimal nutritional diet for elderly patients with predialysis stages of CKD still remains an urgent problem.

Keywords:chronic kidney disease; elderly; nutrition; low-protein diet; senile asthenia; protein-energy wasting

Funding. The study was not sponsored.

Conflict of interest. The authors declare no conflict of interest.

For citation: Borkhanova E.G., Khalfina T.N., Maksudova A.N. Should we prescribe low-protein diet for geriatric patient with chronic kidney disease? Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (2): 21–30. DOI: https://doi.org/10.33029/0042-8833-2022-91-2-21-30 (in Russian)

References

1. Multisectoral action for a life course approach to healthy ageing: draft global strategy and plan of action on ageing and health. In: 69 World Health Assembly, 2016. URL: https://apps.who.int/iris/handle/10665/253277?locale-attribute=zh&show=full

2. Zelnick L.R., Weiss N.S., Kestenbaum B.R., Robinson-Cohen C., Heagerty P.J., Tuttle K., et al. Diabetes and CKD in the United States Population, 2009–2014. Clin J Am Soc Nephrol (CJASN). 2017; 12 (12): 1984–90. DOI: https://doi.org/10.2215/CJN.03700417

3. Dagogo-Jack S. Screening, monitoring, prevention, and treatment strategies for chronic kidney disease in patients with type 2 diabetes. In: Chronic Kidney Disease and Type 2 Diabetes. Arlington, VA: American Diabetes Association, 2021. DOI: https://doi.org/10.2337/db20211-23

4. Ramspek C.L., Verberne W.R., van Buren M., Dekker F.W., Bos W.J.W., van Diepen M. Predicting mortality risk on dialysis and conservative care: development and internal validation of a prediction tool for older patients with advanced chronic kidney disease. Clin. Kidney J. 2020; 14 (1): 189–96. DOI: https://doi.org/10.1093/ckj/sfaa021

5. Al-Wahsh H., Tangri N., Quinn R., Liu P., Ferguson Ms T., Fiocco M., et al. Accounting for the competing risk of death to predict kidney failure in adults with stage 4 chronic kidney disease. JAMA Netw Open. 2021; 4 (5): e219225. DOI: https://doi.org/10.1001/jamanetworkopen.2021.9225

6. Milovanov Yu.S., Aleksandrova I.I., Milovanova L.Yu., Dobrosmyslov I.A. Malnutrition in haemodialysis treatment of acute and chronic kidney disease (practice guidelines). Klinicheskaya nefrologiya [Clinical Nephrology]. 2012; (2): 22–31. (in Russian)

7. Farrington K., Covic A., Nistor I., Aucella F., Clyne N., De Vos L., et al.; ERBP Guideline Development Group. Clinical Practice Guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR<45 ml/min): a summary document from the European Renal Best Practice Group. Nephrol Dial Transplant. 2017; 32 (1): 9–16. DOI: https://doi.org/10.1093/ndt/gfw411

8. Fouque D., Kalantar-Zadeh K., Kopple J., Cano N., Chauveau P., Cuppari L., et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008; 73 (4): 391–8. DOI: https://doi.org/10.1038/sj.ki.5002585 Epub 2007 Dec 19. Erratum in: Kidney Int. 2008; 74 (3): 393. [corrected to Treviño-Becerra A.]

9. Carrero J.J., Thomas F., Nagy K., Arogundade F., Avesani C.M., Chan M., et al. Global prevalence of protein-energy wasting in kidney disease: a meta-analysis of contemporary observational studies from the International Society of Renal Nutrition and Metabolism. J Ren Nutr. 2018; 28 (6): 380–92. DOI: https://doi.org/10.1053/j.jrn.2018.08.006

10. Zha Y., Qian Q. Protein nutrition and malnutrition in CKD and ESRD. Nutrients. 2017; 9 (3): 208. DOI: https://doi.org/10.3390/nu9030208

11. Oner-Iyidogan Y., Gurdol F., Kocak H., Oner P., Cetinalp-Demircan P., Calis- kan Y., et al. Appetite-regulating hormones in chronic kidney disease patients. J Ren Nutr. 2011; 21 (4): 316–21. DOI: https://doi.org/10.1053/j.jrn.2010.07.005

12. Vahdat S. The complex effects of adipokines in the patients with kidney disease. J Res Med Sci. 2018; 23: 60. DOI: https://doi.org/10.4103/jrms.JRMS_1115_17

13. Strid H., Simrén M., Stotzer P.-O., Abrahamsson H., Björnsson E.S. Delay in gastric emptying in patients with chronic renal failure. Scand J Gastroenterol. 2004; 39 (6): 516–20. DOI: https://doi.org/10.1080/00365520410004505

14. Owyang C., Miller L.J., DiMagno E.P., Brennan L.A., Go V.L. Gastrointestinal hormone profile in renal insufficiency. Mayo Clin Proc. 1979; 54 (12): 769–73.

15. Schalla M.A., Stengel A. The role of ghrelin in anorexia nervosa. Int J Mol Sci. 2018; 19 (7): 2117. DOI: https://doi.org/10.3390/ijms19072117

16. Guillory B., Splenser A., Garcia J. The role of ghrelin in anorexia-cachexia syndromes. Vitam Horm. 2013; 92: 61–106. DOI: https://doi.org/10.1016/B978-0-12-410473-0.00003-9

17. Spoto B., Pisano A., Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016; 311 (6): F1087–108. DOI: https://doi.org/10.1152/ajprenal.00340.2016

18. Reckelhoff J.F., Yanes L.L., Iliescu R., Fortepiani L.A., Granger J.P. Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am J Physiol Renal Physiol. 2005; 289 (5): F941–8. DOI: https://doi.org/10.1152/ajprenal.00034.2005

19. Carrero J.J., Stenvinkel P., Cuppari L., Ikizler T.A., Kalantar-Zadeh K., Kay- sen G., et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013; 23 (2): 77–90. DOI: https://doi.org/10.1053/j.jrn.2013.01.001

20. Jankowska M., Cobo G., Lindholm B., Stenvinkel P. Inflammation and protein-energy wasting in the uremic milieu. Contrib Nephrol. 2017; 191: 58–71. DOI: https://doi.org/10.1159/000479256

21. Gupta J., Mitra N., Kanetsky P.A., Devaney J., Wing M.R., Reilly M., et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol. 2012; 7 (12): 1938–46. DOI: https://doi.org/10.2215/CJN. 03500412.

22. Kramer H. Diet and chronic kidney disease. Adv Nutr. 2019; 10 (suppl 4): S367–79. DOI: https://doi.org/10.1093/advances/nmz011

23. Crestani T., Crajoinas R.O., Jensen L., Dima L.L., Burdeyron P., Hauet T., et al. A sodium oxalate-rich diet induces chronic kidney disease and cardiac dysfunction in rats. Int J Mol Sci. 2021; 22 (17): 9244. DOI: https://doi.org/10.3390/ijms22179244

24. Bargagli M., Tio M.C., Waikar S.S., Ferraro P.M. Dietary oxalate intake and kidney outcomes. Nutrients. 2020; 12 (9): 2673. DOI: https://doi.org/10.3390/nu12092673

25. Goncalves S., Pecoits-Filho R., Perreto S., Barberato S.H., Stinghen A.E., Lima E.G., et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006; 21 (10): 2788–94. DOI: https://doi.org/10.1093/ndt/gfl273

26. Ramezani A., Raj D.S. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014; 25 (4): 657–70. DOI: https://doi.org/10.1681/ASN.2013080905

27. Vaziri N.D., Wong J., Pahl M., Piceno Y.M., Yuan J., DeSantis T.Z., et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013; 83 (2): 308–15. DOI: https://doi.org/10.1038/ki.2012.345

28. Tkacheva O.N., Kotovskaya Yu.V., Runikhina N.K., Frolova E.V., Naumov A.V., Vorob’yova N.M., et al Clinical guidelines on frailty. Rossiyskiy zhurnal geriatricheskoy meditsiny [Russian Journal of Geriatric Medicine]. 2020; (1): 11–46. DOI: https://doi.org/10.37586/2686-8636-1-2020-11-46 (in Russian)

29. Giordano M., Ciarambino T., Castellino P., Paolisso G. Light and shadows of dietary protein restriction in elderly with chronic kidney disease. Nutrition. 2013; 29 (9): 1090–3. DOI: https://doi.org/10.1016/j.nut.2013.01.023

30. Lorenzo-López L., Maseda A., de Labra C., Regueiro-Folgueira L., Rodríguez-Villamil J.L., Millán-Calenti J.C. Nutritional determinants of frailty in older adults: a systematic review. BMC Geriatr. 2017; 17 (1): 108. DOI: https://doi.org/10.1186/s12877-017-0496-2

31. Gaffney-Stomberg E., Insogna K.L., Rodriguez N.R., Kerstetter J.E. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc. 2009; 57 (6): 1073–9. DOI: https://doi.org/10.1111/j.1532-5415.2009.02285.x

32. Gielen E., Beckwée D., Delaere A., De Breucker S., Vandewoude M., Bautmans I.; Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG). Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr Rev. 2021; 79 (2): 121–47. DOI: https://doi.org/10.1093/nutrit/nuaa011

33. Montiel-Rojas D., Nilsson A., Santoro A., Bazzocchi A., de Groot L.C.P.G.M., Feskens E.J.M., et al. Fighting sarcopenia in ageing european adults: the importance of the amount and source of dietary proteins. Nutrients. 2020; 12 (12): 3601. DOI: https://doi.org/10.3390/nu12123601

34. Bonnefoy M., Gilbert T., Bruyère O., Paillaud E., Raynaud-Simon A., Guérin O., et al. Quels bénéfices attendre de la supplémentation en protéines pour limiter la perte de masse et de fonction musculaire chez le sujet âgé fragile ? [Protein supplementation to prevent loss in muscle mass and strength in frail older patients: a review]. Geriatr Psychol Neuropsychiatr Vieil. 2019; 17 (2): 137–43. DOI: https://doi.org/10.1684/pnv.2019.0804 (in French)

35. Rahi B., Colombet Z., Gonzalez-Colaço Harmand M., Dartigues J.F., Boirie Y., Letenneur L., et al. Higher protein but not energy intake is associated with a lower prevalence of frailty among community-dwelling older adults in the French three-city cohort. J Am Med Dir Assoc (JAMDA). 2016; 17 (7): 672.e7–11. DOI: https://doi.org/10.1016/j.jamda.2016.05.005

36. Kobayashi S., Suga H., Sasaki S.; Three-Generation Study of Women on Diets and Health Study Group. Diet with a combination of high protein and high total antioxidant capacity is strongly associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr J. 2017; 16 (1): 29. DOI: https://doi.org/10.1186/s12937-017-0250-9

37. Bollwein J., Diekmann R., Kaiser M.J., Bauer J.M., Uter W., Sieber C.C., et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nürmberg. Nutr J. 2013; 12: 109. DOI: https://doi.org/10.1186/1475-2891-12-109

38. Shikany J.M., Barrett-Connor E., Ensrud K.E., Cawthon P.M., Lewis C.E., Dam T.T., et al. Macronutrients, diet quality, and frailty in older men. J Gerontol A Biol Sci Med Sci. 2014; 69 (6): 695–701. DOI: https://doi.org/10.1093/gerona/glt196

39. Hanna R.M., Ghobry L., Wassef O., Rhee C.M., Kalantar-Zadeh K. A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif. 2020; 49 (1–2): 202–11. DOI: https://doi.org/10.1159/000504240

40. Porter Starr K.N., McDonald S.R., Jarman A., Orenduff M., Sloane R., Pieper C.F., et al. Markers of renal function in older adults completing a higher protein obesity intervention and one year later: findings from the MEASUR-UP trial. J Nutr Gerontol Geriatr. 2018; 37 (2): 117–29. DOI: https://doi.org/10.1080/21551197.2018.1478696

41. KDIGO 2012 Clinical Practice Guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3 (1): 1–150. DOI: https://doi.org/10.1038/kisup.2012.48

42. Robertson L., Waugh N., Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev. 2007; 4: CD002181. DOI: https://doi.org/10.1002/14651858.CD002181.pub2

43. Koya D., Haneda M., Inomata S., Suzuki Y., Suzuki D., Makino H., et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomized controlled trial. Diabetologia. 2009; 52 (10): 2037–45. DOI: https://doi.org/10.1007/s00125-009-1467-8

44. Cupisti A., Gallieni M., Avesani C.M., D’Alessandro C., Carrero J.J., Piccoli G.B. Medical nutritional therapy for patients with chronic kidney disease not on dialysis: the low protein diet as a medication. J Clin Med. 2020; 9 (11): E3644. DOI: https://doi.org/10.3390/jcm9113644

45. Ko G.-J., Kalantar-Zadeh K. How important is dietary management in chronic kidney disease progression? A role for low protein diets. Korean J Intern Med. 2021; 36 (4): 795–806. DOI: https://doi.org/10.3904/kjim.2021.197

46. Bauer J.M., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROTAGE study group. J Am Med Dir Assoc (JAMDA). 2013; 14 (8): 542–59. DOI: https://doi.org/10.1016/j.jamda.2013. 05.021

47. Brunori G., Viola B.F., Parrinello G., De Biase V., Como G., Franco V., et al. Efficacy and safety of a very-low protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am J Kidney Dis. 2007; 49 (5): 569–80. DOI: https://doi.org/10.1053/j.ajkd.2007.02.278

48. Hahn D., Hodson E.M., Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev. 2020; 10 (10): CD001892. DOI: https://doi.org/10.1002/14651858.CD001892.pub5

49. Kitada M., Ogura Y., Monno I., Koya D. A low-protein diet for diabetic kidney disease: its effect and molecular mechanism, an approach from animal studies. Nutrients. 2018; 10 (5): 544. DOI: https://doi.org/10.3390/nu10050544

50. Guigoz Y., Vellas B. Nutritional assessment in older adults : MNA® 25 years of a screening tool and a reference standard for care and research; what next? J Nutr Health Aging. 2021; 25 (4): 528–83. DOI: https://doi.org/10.1007/s12603-021-1601-y

51. Cereda E., Pedrolli C., Klersy C., Bonardi C., Quarleri L., Cappello S., et al. Nutritional status in older persons according to healthcare setting: a systematic review and meta-analysis of prevalence data using MNA®. Clin Nutr. 2016; 35 (6): 1282–90. DOI: https://doi.org/10.1016/j.clnu.2016.03.008

52. Sanayei M., Vaghef-Mehrabany E., Vaghef-Mehrabany L. Chapter 46 – Geriatric nutritional risk index: applications and limitations. Eds by Martin C.R., Preedy V.R., Rajendram R. Factors Affecting Neurological Aging. Academic Press, 2021: 535–44. ISBN 9780128179901. DOI: https://doi.org/10.1016/B978-0-12-817990-1.00046-9

53. Nakagawa N., Maruyama K., Hasebe N. Utility of geriatric nutritional risk index in patients with chronic kidney disease: a mini-review. Nutrients. 2021; 13 (11): 3688. DOI: https://doi.org/10.3390/nu13113688

54. Tanaka A., Inaguma D., Shinjo H., Murata M., Takeda A. Relationship between mortality and Geriatric Nutritional Risk Index (GNRI) at the time of dialysis initiation: a prospective multicenter cohort study. Ren Replace Ther. 2017; 3: 27. DOI: https://doi.org/10.1186/s41100-017-0108-9

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»