Nanocellulose in the food industry and medicine: structure, production and application

Abstract

Cellulose is the most abundant polymer in the biosphere and has many technical applications, including food production. The development of cellulose technology in the 21st century has led to the emergence of nanocellulose (NC), which has widely varying chemical and physical properties and, therefore, has fundamentally new areas of application in biomedicine and the food industry.

The aim of this work is to review the literature on the structure, sources, methods for obtaining nanocelluloses, including methods for their chemical modification, current and prospective applications in the food industry, packaging materials, biomedicine, etc.

Material and methods. For the analysis, sources were selected mainly for the period from 2014 to 2022, contained in the international databases PubMed, WoS and Scopus and meeting the requirements of scientific reliability and completeness.

Results. Among the main types of NC there can be identified nanofibrous cellulose (NFC), consisting of fibers longer than 500 nm and about 10–20 nm thick, and nanocrystalline cellulose (NCC) with particles 100–500 nm long and less than 100 nm in diameter. A special group of materials includes bacterial NC (BNC) produced by microorganisms and representing entangled coils or layers of cellulose fibers with a thickness of less than 100 nm. Significant changes in the physical, chemical and functional properties of NC can be achieved by its physical and chemical modification, which leads to a change in swelling, an increase in the mechanical strength and stability of hydrogels, and compatibility with synthetic polymers. NFC, NCC and BNC are offered as food ingredients for inclusion both in mass consumption products and in specialized foods for dietary and therapeutic uses, as well as in the so-called «functional products», for which manufacturers declare the ability to influence actively on the state of intestinal microflora and digestive function. In biomedical applications, of great interest is the biocompatibility of BNC with various cell types in combination with biodegradability, which makes it possible to create new types of materials for reconstructive surgery, effective and safe dressings. When used as packaging materials, NC products successfully compete with synthetic polymers without causing long-term environmental pollution. Factors hindering the introduction of NC products into practice are the gaps of knowledge of NC biological action, combined with the risks caused by possible residual amounts of chemicals and biochemical reagents, bacterial toxins, enzyme preparations and microorganisms-producers in the composition of NC.

Conclusion. There is an important task to develop a system for regulating NCs and products with its content, in accordance with the technical regulations of the Customs Union of the EAEU.

Keywords:bacterial nanocellulose; nanofiber cellulose; nanocrystalline cellulose; nanofibers; nanomaterials; food industry; packaging materials; biomedicine; chemical modification; nanocomposite hydrogels

Funding. The research was performed at the expense of subsidies from the Program of Basic Scientific Research (project of the Ministry of Science and Higher Education of the Russian Federation No. 0410-2022-0003).

Conflicts of interest. The authors declare no conflict of interest.

For citation: Gmoshinski I.V., Shipelin V.A., Khotimchenko S.A. Nanocellulose in the food industry and medicine: structure, production and application. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (3): 6–20. DOI: https://doi.org/10.33029/0042-8833-2022-91-3-6-20 (in Russian)

References

1. Wu W., Yu Q., You L., Chen K., Tang H., Liu J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy. 2018; 76: 515–25. URL: https://doi.org/10.1016/J.LANDUSEPOL.2018.02.032

2. Kumar R., Sharma R.K., Singh A. Grafted cellulose: a bio-based polymer for durable applications. Polym Bull. 2017; 75: 2213–42. DOI: https://doi.org/10.1007/s00289-017-2136-6

3. Senthil Muthu Kumar T., Rajini N., Obi Reddy K., Varada Rajulu A., Siengchin S., Ayrilmis N. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol. 2018; 112: 1310–5. DOI: https://doi.org/10.1016/J.IJBIOMAC.2018.01.167

4. Younes M., Aggett P., Aguilar F., Crebelli R., Di Domenico A., Dusemund B., et al. Re-evaluation of celluloses E 460(i), E 460(ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. EFSA J. 2018; 16 (1): e05047. DOI: https://doi.org/10.2903/j.efsa.2018.5047

5. Abdul Khalil H.P.S., Davoudpour Y., Saurabh C.K., Hossain Md S., Adnan A.S, Dungani R., et al. A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev. 2016; 64: 823–36. DOI: https://doi.org/10.1016/j.rser.2016.06.072

6. Thomas P., Duolikun T., Rumjit N.P., Moosavi S., Lai C.W., Bin Johan M.R., Fen L.B. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater. 2020; 110: 103884. DOI: https://doi.org/10.1016/j.jmbbm.2020.103884

7. Michelin M., Gomes D.G., Romaní A., Polizeli M.L.T.M., Teixeira J.A. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules. 2020; 25 (15): 3411. DOI: https://doi.org/10.3390/molecules25153411

8. Vasconcellos V.M., Farinas C.S., Ximenes E., Slininger P., Ladisch M. Adaptive laboratory evolution of nanocellulose-producing bacterium. Biotechnol Bioeng. 2019; 116 (8): 1923–33. DOI: https://doi.org/10.1002/bit.26997

9. Silva F.A.G.S., Dourado F., Gama M., Poças F. Nanocellulose bio-based composites for food packaging. Nanomaterials (Basel). 2020; 10 (10): 2041. DOI: https://doi.org/10.3390/nano10102041

10. Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S. Commercial application of cellulose nano-composites – a review. Biotechnol Rep. 2019; 21: e00316. DOI: https://doi.org/10.1016/j.btre.2019.e00316

11. Dunlop M.J., Acharya B., Bissessur R. Isolation of nanocrystalline cellulose from tunicates. J Environ Chem Eng. 2018; 6 (4): 4408–12. DOI: https://doi.org/10.1016/j.jece.2018.06.056

12. Carreño N.L.V., Barbosa A.M., Noremberg B.S., Salas M.M.S., Fernandes S.C.M., Labidi J. Advances in nanostructured cellulose-based biomaterials. Cham: Springer International Publishing, 2017: 1–32. DOI: https://doi.org/10.1007/978-3-319-58158-3_1

13. Kim J.H., Shim B.S., Kim H.S., Lee Y.J., Min S.K., Jang D., et al. Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Technol. 2015; 2 (2): 197–213. DOI: https://doi.org/10.1007/s40684-015-0024-9

14. Kupnik K., Primožič M., Kokol V., Leitgeb M. Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel). 2020; 12 (12): 2825. DOI: https://doi.org/10.3390/polym12122825

15. Endes C., Camarero-Espinosa S., Mueller S., Foster E.J., Petri-Fink A., Rothen-Rutishauser B., et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnol. 2016; 14 (1): 78. DOI: https://doi.org/10.1186/s12951-016-0230-9

16. Jalili Tabaii M., Emtiazi G. Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Deliv Sci Technol. 2018; 44: 244–53. DOI: https://doi.org/10.1016/J.JDDST.2017.12.019

17. Esa F., Tasirin S.M., Rahman N.A. Overview of bacterial cellulose production and application. Agric Agric Sci Procedia. 2014; 2: 113–9. DOI: https://doi.org/10.1016/j.aaspro.2014.11.017

18. Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol. 2017; 102: 1166–73. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.110

19. Portela da Gama F.M., Dourado F. Bacterial nanocellulose: what future? Bioimpacts. 2018; 8 (1): 1–3. DOI: https://doi.org/10.15171/bi.2018.01

20. Ullah H., Wahid F., Santos H.A., Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym. 2016; 150: 330–52. DOI: https://doi.org/10.1016/j.carbpol.2016.05.029

21. Skiba E.A., Budaeva V.V., Ovchinnikova E.V., Gladysheva E.K., Kashcheyeva E.I., Pavlov I.N., et al. A technology for pilot production of bacterial cellulose from oat hulls. Chem Eng J. 2020; 383: e123128. DOI: https://doi.org/10.1016/j.cej.2019.123128

22. Erbas Kiziltas E., Kiziltas A., Gardner D.J. Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr Polym. 2015; 124: 131–8. DOI: https://doi.org/10.1016/j.carbpol.2015.01

23. Cheng Z., Yang R., Liu X., Chen H. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour Technol. 2017; 234: 8–14. DOI: https://doi.org/10.1016/j.biortech.2017.02.131

24. Dourado F., Fontão A., Leal M., Rodrigues A.C., Miguel G. Chap- ter 12 – Process modeling and techno-economic evaluation of an industrial bacterial nanocellulose fermentation process. In: M. Gama, F. Dourado, S. Bielecki (eds). Bacterial Nanocellulose: from Biotechnology to Bio-Economy. Amsterdam: Elsevier, 2016: 199–214. ISBN 9780444634580. DOI: https://doi.org/10.1016/B978-0-444-63458-0.00012-3

25. Kubiak K., Jedrzejczak-Krzepkowska M., Ludwicka K., Bielecki S. Chapter 3 – Molecular control over BNC biosynthesis. In: M. Gama, F. Dourado, S. Bielecki (eds). Bacterial Nanocellulose: from Biotechnology to Bio-Economy. Amsterdam: Elsevier, 2016: 47–58. DOI: https://doi.org/10.1016/B978-0-444-63458-0.00003-2

26. Cacicedo M.L., Castro M.C., Servetas I., Bosnea L., Boura K., Tsafrakidou P., et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 2016; 213: 172–80. DOI: https://doi.org/10.1016/J.BIORTECH.2016.02.071

27. Jozala A.F., de Lencastre-Novaes L.C., Lopes A.M., de Carvalho Santos-Ebinuma V., Mazzola P.G., Pessoa A., et al. Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol. 2016; 100 (5): 2063–72. DOI: https://doi.org/10.1007/s00253-015-7243-4

28. Klemm D., Cranston E.D., Fischer D., Gama M., Kedzior S.A., Kralisch D., et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today. 2018; 21 (7): 720–48. DOI: https://doi.org/10.1016/J.MATTOD.2018.02.001

29. Kondo T., Kose R., Naito H., Kasai W. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym. 2014; 112: 284–90. DOI: https://doi.org/10.1016/j.carbpol.2014.05.064

30. Kekäläinen K., Liimatainen H., Illikainen M., Maloney T.C., Niinimäki J. The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose. 2014; 21 (3): 1163–74. DOI: https://doi.org/10.1007/s10570-014-0210-x

31. Jiang F., Hsieh Y.-L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A. 2014; 2 (18): 6337–42. DOI: https://doi.org/10.1039/c4ta00743c

32. Rol F., Belgacem M.N., Gandini A., Bras J. Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci. 2019; 88: 241–64. DOI: https://doi.org/10.1016/J.PROGPOLYMSCI.2018.09.002

33. Kusano Y., Madsen B., Berglund L., Oksman K. Modification of cellulose nanofibre surfaces by He/NH3 plasma at atmospheric pressure. Cellulose. 2019; 26 (12): 7185–94. DOI: https://doi.org/10.1007/s10570-019-02594-8

34. Kusano Y., Madsen B., Berglund L. Aitomäki Y., Oksman K. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surf Eng. 2018; 34 (11): 825–31. DOI: https://doi.org/10.1080/02670844.2017.1334411

35. Chuensangjun C., Kanomata K., Kitaoka T., Chisti Y., Sirisansaneeyakul S. Surface-modified cellulose nanofibers-graft-poly(lactic acid)s made by ring-opening polymerization of l-lactide. J Polym Environ. 2019; 27 (4): 847–61. DOI: https://doi.org/10.1007/s10924-019-01398-y

36. Yang X., Ku T.H., Biswas S.K., Yano H., Abe K. UV grafting: surface modification of cellulose nanofibers without the use of organic solvents. Green Chem. 2019; 21 (17): 4619–24. DOI: https://doi.org/10.1039/c9gc02035g

37. Hatton F.L., Malmström E., Carlmark A. Tailor-made copolymers for the adsorption to cellulosic surfaces. Eur Polym J. 2015; 65: 325–39. DOI: https://doi.org/10.1016/j.eurpolymj.2015.01.026

38. Sorvari A., Saarinen T., Haavisto S. Salmela J., Vuoriluoto M., Sep- pälä J. Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr Polym. 2014; 106: 283–92. DOI: https://doi.org/10.1016/J.CARBPOL.2014.02.032

39. Håkansson K.M.O., Fall A.B., Lundell F., Yu S., Krywka C., Roth S.V., et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun. 2014; 5 (1): 4018. DOI: https://doi.org/10.1038/ncomms5018

40. Mittal N., Jansson R., Widhe M., Benselfelt T,, Håkansson K.M.O., Lundell F., et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano. 2017; 11 (5): 5148–59. DOI: https://doi.org/10.1021/acsnano.7b02305

41. Karim Z., Afrin S., Husain Q., Danish R. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol. 2017; 37 (3): 355–70. DOI: https://doi.org/10.3109/07388551.2016.1163322.

42. Zanchetta G., Rocchi E., Piazza L. Seeing is believing: coupling between liquid crystalline ordering and rheological behaviour in cellulose nanocrystals suspensions. Chem Eng Trans. 2017; 57: 1933–8. DOI: https://doi.org/10.3303/CET1757323

43. Velasquez-Cock J., Serpa A., Veles L., Ganan P., Hoyos C.G., Ca- stro C., et al. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocoll. 2019; 87: 204–13. DOI: https://doi.org/10.1016/j.foodhyd.2018.07.035

44. Nascimento D.M., Nunes Y.L., Figueirêdo M.C.B., De Aze- redo H.M.C., Aouada F.A., Feitosa J.P.A., et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. 2018; 20 (11): 2428–48. DOI: https://doi.org/10.1039/c8gc00205c

45. Azeredo H.M.C., Barud H., Farinas C.S. Vasconcellos V.M., Claro A.M. Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst. 2019; 3. DOI: https://doi.org/10.3389/fsufs.2019.00007

46. Cui S., Li M., Zhang S., Liu J., Sun Q., Xiong L. Physicochemical properties of maize and sweet potato starches in the presence of cellulose nanocrystals. Food Hydrocoll. 2018; 77: 220–7. DOI: https://doi.org/10.1016/j.foodhyd.2017.09.037

47. Serpa A., Velasquez-Cock J., Gañan P. Castro C., Velez L., Zuluaga R. Vegetable nanocellulose in food science: a review. Food Hydrocoll. 2016; 57: 178–86. DOI: https://doi.org/10.1016/j.foodhyd.2016.01.023

48. Hu H., Pereira J., Xing L., Hu Y., Qiao C., Zhou G., et al. Effects of regenerated cellulose emulsion on the quality of emulsified sausage. LWT Food Sci Technol. 2016; 70: 315–21. DOI: https://doi.org/10.1016/j.lwt.2016.02.055

49. Ma T., Hu X., Lu S., Liao X., Song Y., Hu X. Nanocellulose: a promising green treasure from food wastes to available food materials. Crit Rev Food Sci Nutr. 2022; 62 (4): 989–1002. DOI: https://doi.org/10.1080/10408398.2020.1832440

50. Liu L., Kong F. Influence of nanocellulose on in vitro digestion of whey protein isolate. Carbohydr Polym. 2019; 210: 399–411. DOI: https://doi.org/10.1016/j.carbpol.2019.01.071

51. Beketova N.A., Vrzhesinskaya O.A., Kosheleva O.V., Pereverzeva O.G., Isayeva V.A., Rudoy B.A., et al. The estimation of several dietary fibers possibility to absorb in vitro vitamins A, E, C, B1 and B2. Voprosy pitaniia [Problems of Nutrition]. 2010; 79 (2): 47–53 (in Russian)

52. Liu L., Kong F. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. Int J Biol Macromol. 2019; 137: 1278–85. DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.194

53. Gonçalves J.P., Pipek L.Z., Donaghey T.C., DeLoid G.M., Demokritou P., Brain J.D., et al. Effects of ingested nanomaterials on tissue distribution of co-ingested zinc and iron in normal and zinc-deficient mice. NanoImpact. 2021; 21: 100279. DOI: https://doi.org/10.1016/j.impact.2020.100279

54. Li Y., Yang Q., Liu B., Zhang Q., Liu Y., Zhao X., Li S. Improved water dispersion and bioavailability of coenzyme Q10 by bacterial cellulose nanofibers. Carbohydr Polym. 2022; 276: 118788. DOI: https://doi.org/10.1016/j.carbpol.2021.118788

55. Benshitrit R.C., Levi C.S., Tal S.L., Shimoni E., Lesmes U. Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct. 2012; 3 (1): 10–21. DOI: https://doi.org/10.1039/C1FO10068H

56. Luan Q., Zhou W., Zhang H., Bao Y., Zheng M., Shi J., et al. Cellulose-based composite macrogels from cellulose fiber and cellulose nanofiber as intestine delivery vehicles for probiotics. J Agric Food Chem. 2018; 66 (1): 339–45. DOI: https://doi.org/10.1021/acs.jafc.7b04754

57. Zhang H., Yang C., Zhou W., Luan Q., Li W., Deng X., et al. A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain Chem Eng. 2018; 6 (11): 13 924–31. DOI: https://doi.org/10.1021/acssuschemeng.8b02237

58. Chinga-Carrasco G. Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices. Biomacromolecules. 2018; 19 (3): 701–11. DOI; https://doi.org/10.1021/acs.biomac.8b00053

59. Sultan S., Mathew A.P. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale. 2018; 10 (9): 4421–31. DOI: https://doi.org/10.1039/c7nr08966j

60. Leppiniemi J., Lahtinen P., Paajanen A., Mahlberg R., Metsa Kortelainen S., Pinomaa T., et al. 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater Interfaces. 2017; 9 (26): 21 959–70. DOI: https://doi.org/10.1021/acsami.7b02756

61. Markstedt K., Escalante A., Toriz G., Gatenholm P. Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3d printing. ACS Appl Mater Interfaces. 2017; 9 (46): 40 878–86. DOI: https://doi.org/10.1021/acsami.7b13400

62. Cernencu A.I., Lungu A., Stancu I., Serafim A., Heggset E.B., Syverud K., et al. Bioinspired 3D printable pectin-nanocellulose ink formulations. Carbohydr Polym. 2019; 220: 12–21. DOI: https://doi.org/10.1016/j.carbpol.2019.05.026

63. Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T., et al. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol. 2016; 39: 76–88. DOI: https://doi.org/10.1016/j.copbio.2016.01.002

64. Huang J., Dufresne A., Lin N. Nanocellulose: from fundamentals to advanced materials. Hoboken, NJ: John Wiley & Sons, 2019: 504 p.

65. Sangroniz A., Zhu J.B., Tang X., Etxeberria A., Chen E.Y.X., Sar- don H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat Commun. 2019; 10 (1): 3559. DOI: https://doi.org/10.1038/s41467-019-11525-x

66. Rahman A., Sarkar A., Yadav O.P., Achari G., Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ. 2021; 757: 143872. DOI: https://doi.org/10.1016/j.scitotenv.2020.143872

67. Eurostat. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php/Packaging_waste_statistics#Recycling_and_recovery_rates (date of access October 16, 2022)

68. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci Adv. 2017; 3: 25–9. DOI: https://doi.org/10.1126/sciadv.1700782

69. De Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 2018; 24 (4): 1405–16. DOI: https://doi.org/10.1111/gcb.14020

70. Mondal S. Review on nanocellulose polymer nanocomposites. Polym Plast Technol. 2018; 57 (13): 1377–91. DOI: https://doi.org/10.1080/03602559.2017.1381253

71. Mu R., Hong X., Ni Y., Li Y., Pang J., Wang Q., et al. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol. 2019; 93: 136–44. DOI: https://doi.org/10.1016/j.tifs.2019.09.013

72. Vilarinho F., Silva A.S., Vaz M.F., Farinha J.P. Nanocellulose in green food packaging. Crit Rev Food Sci Nutr. 2018; 58 (9): 1526–37. DOI: https://doi.org/10.1080/10408398.2016.1270254

73. Ferrer A., Pal L., Hubbe M. Nanocellulose in packaging: advances in barrier layer technologies. Ind Crops Prod. 2017; 95: 574–82. DOI: https://doi.org/10.1016/j.indcrop.2016.11.012

74. Bonwick G., Bradley E., Lock I., Romero R. Bio-based materials for use in food contact applications. In: Report to the Food Standards Agency. York, UK: Fera Science, 2019: 41 p.

75. Fuertes G., Soto I., Carrasco R., Vargas M., Sabattin J., Lagos C. Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. J Sensors. 2016; 2016: 4046061. DOI: https://doi.org/10.1155/2016/4046061

76. Biji K.B., Ravishankar C.N., Mohan C.O., Srinivasa Gopal T.K. Smart packaging systems for food applications: a review. J Food Sci Technol. 2015; 52 (10): 6125–35. DOI: https://doi.org/10.1007/s13197-015-1766-7

77. Vilela C., Moreirinha C., Domingues E.M. Figueiredo F.M.L., Almeida A., Freire C.S.R. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging. Nanomaterials. 2019; 9 (7): 980. DOI: https://doi.org/10.3390/nano9070980

78. Tsai Y.H., Yang Y.N., Ho Y.C., Tsai, M.L., Mi F.L. Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohydr Polim. 2018; 180: 286–96. DOI: https://doi.org/10.1016/j.carbpol.2017.09.100

79. Moreirinha C., Vilela C., Silva N.H.C.S., Pinto R.J.B., Almeida A., Rocha M.A.M., et al. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocoll. 2020; 108: 105836. DOI: https://doi.org/10.1016/j.foodhyd.2020.105836

80. Missio A.L., Mattos B.D., Ferreira D.F., Magalhães W.L.E., Bertuol D.A., Gatto D.A., et al. Nanocellulose-tannin films: from trees to sustainable active packaging. J Clean Prod. 2018; 184: 143–51. DOI: https://doi.org/10.1016/j.jclepro.2018.02.205

81. El-Wakil N.A., Hassan E.A., Abou-Zeid R.E., Kong F., Lin M., Mustapha A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym. 2015; 124: 337–46. DOI: https://doi.org/10.1016/j.carbpol.2015.01.076

82. Wang W., Yu Z., Alsammarraie F.K., Kong F., Lin M., Mustapha A. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocoll. 2020; 100: 105411. DOI: https://doi.org/10.1016/j.foodhyd.2019.105411

83. Padrão J., Gonçalves S., Silva J.P., Sencadas V., Lanceros-Mendez S., Pinheiro A.C., et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll. 2016; 58: 126–40. DOI: https://doi.org/10.1016/j.foodhyd.2016.02.019

84. Jipa I.M., Stoica-Guzun A., Stroescu M. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci Technol. 2012; 47 (2): 400–6. DOI: https://doi.org/10.1016/j.lwt.2012.01.039

85. Kuswandi B., Oktaviana R., Abdullah A., Heng L.Y. A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packag Technol Sci. 2014; 27 (1): 69–81. DOI: https://doi.org/10.1002/pts.2016

86. Lu P., Yang Y., Liu R., Liu X., Ma J., Wu M., et al. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr Polym. 2020; 249: 116831. DOI: https://doi.org/10.1016/j.carbpol.2020.116831

87. Subhedar A., Bhadauria S., Ahankari S., Kargarzadeh H. Nanocellulose in biomedical and biosensing applications: a review. Int J Biol Macromol. 2021; 166: 587–600. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.217

88. Abdi M.M., Razalli R.L., Tahir P.M., Chaibakhsh N., Hassani M., Mir M. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol. 2019; 126: 1213–22. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.001

89. Gomes N.O., Carrilho E., Machado S.A.S., Sgobbi L.F. Bacterial cellulose-based electrochemical sensing platform: a smart material for miniaturized biosensors. Electrochim Acta. 2020; 349: 136341. DOI: https://doi.org/10.1016/j.electacta.2020.136341

90. Zhang Z., Liu G., Li X., Zhang S., Lü X., Wang Y. Design and synthesis of fluorescent nanocelluloses for sensing and bioimaging applications. Chempluschem. 2020; 85 (3): 487–502. DOI: https://doi.org/10.1002/cplu.201900746

91. Lee K.Y., Aitomäki Y., Berglund L.A., Oksman K., Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol. 2014; 105: 15–27. DOI: https://doi.org/10.1016/j.compscitech.2014.08.032

92. Fang Z., Hou G., Chen C., Hu L. Nanocellulose-based films and their emerging applications. Curr Opin Solid State Mater Sci. 2019; 23 (4): 100764. DOI: https://doi.org/10.1016/j.cossms.2019.07.003

93. Soykeabkaew N., Tawichai N., Thanomsilp C., Suwantong O. Nanocellulose-reinforced «green» composite materials. Walailak J Sci Technol. 2016; 14 (5): 353–68.

94. Kargarzadeh H., Mariano M., Huang J., Lin N., Ahmad I., Duf- resne A., et al. Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer (Guildf). 2017; 132: 368–93. DOI: https://doi.org/10.1016/j.polymer.2017.09.043

95. Bideau B., Loranger E., Daneault C. Nanocellulose-polypyrrole-coated paperboard for food packaging application. Prog Org Coatings. 2018; 123: 128–33. DOI: https://doi.org/10.1016/j.porgcoat.2018.07.003

96. Tyagi P., Lucia L.A., Hubbe M.A., Pal L. Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydr Polym. 2019; 206: 281–8. DOI: https://doi.org/10.1016/j.carbpol.2018.10.114

97. Koppolu R., Lahti J., Abitbol T., Swerin A., Kuusipalo J., Toi- vakka M. Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings. ACS Appl Mater Interfaces. 2019; 11 (12): 11 920–7. DOI: https://doi.org/10.1021/acsami.9b00922

98. Meriçer Ç., Minelli M., de Angelis M.G., Baschetti M.G., Stancampiano A., Laurita R., et al. Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Ind Crops Prod. 2016; 93: 235–43. DOI: https://doi.org/10.1016/j.indcrop.2016.03.020

99. Vähä-Nissi M., Koivula H.M., Raisanen H.M., Vartiainen J., Ra- gni P., Kentta E., et al. Cellulose nanofibrils in biobased multilayer films for food packaging. J Appl Polym. 2017; 134 (19). DOI: https://doi.org/10.1002/app.44830

100. Panaitescu D.M., Frone A.N., Chiulan I., Gabor R.A., Spataru I.C., Casarica A. Biocomposites from polylactic acid and bacterial cellulose nanofibers obtained by mechanical treatment. BioResources. 2017; 12 (1): 662–72. DOI: https://doi.org/10.15376/biores.12.1.662-672

101. Arrieta M.P., Fortunati E., Dominici F., López J., Kenny J.M. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym. 2015; 121: 265–75. DOI: https://doi.org/10.1016/j.carbpol.2014.12.056

102. Montero B., Rico M., Rodríguez-Llamazares S., Barral L., Bouza R. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym. 2017; 157: 1094–104. DOI: https://doi.org/10.1016/j.carbpol.2016.10.073

103. Iavicoli I., Leso V., Beezhold D.H., Shvedova A.A. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol. 2017; 329: 96–111. DOI: https://doi.org/10.1016/j.taap.2017.05.025

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»