Relative energy deficiency in sport: modern approaches to diagnostics, treatment and prevention

Abstract

In recent years, close attention has been paid to energy deficiency in professional athletes. More and more studies confirm the widespread prevalence of relative energy deficiency syndrome in sports and its relationship with various pathological conditions that lead to a decrease in the level of athletic performance. Nowadays the possibilities of early diagnosis and treatment of this syndrome are being carefully studied, and clinical protocols are being actively developed to facilitate the early detection of energy deficiency.

The aim of the study was to summarize the modern data on the influence of the syndrome of relative energy deficiency in sports on the health and performance of athletes, as well as to consider effective methods for the diagnosis, treatment and prevention of this syndrome.

Material and methods. The search was carried out using the Google Academy engine and electronic databases PubMed, MEDLINE, EMBASE, Scopus, Web of Science, eLIBRARY for the period from 2017 to 2021. For the search, we used keywords and their combinations: “relative energy deficit in sports”, “female athlete triad”, “menstrual dysfunction”, “osteoporosis”.

Results. Based on our analysis, we can conclude that the syndrome of relative energy deficit in sports has a multicomponent negative effect on the athlete’s organism and negatively affects his performance, well-being and sports results. Diagnosis of this condition is challenging due to the nonspecificity and variety of symptoms. Key diagnostic methods include physical examination, anamnesis gaining, dual energy X-ray absorptiometry, bioimpedance body composition analysis, and hormonal profile studies. Additional methods include: electrocardiography, study of the basal metabolic rate, hematological examination (hemoglobin, ferritin, etc.), determining the level of energy consumption using diaries of food and physical activity, determining blood vitamin level, etc. To facilitate the screening, diagnosis and follow-up of athletes, it is possible to use specially developed clinical protocols. Non-drug nutritional correction and optimal training plan are the main methods of treatment and prevention of energy deficiency. If this type of treatment is ineffective, hormone therapy should be considered. It is recommended to use transdermal estrogen therapy in combination with short-term progestin therapy. In some cases, when very low bone mineral density or delayed fracture consolidation is detected, it is possible to use recombinant parathyroid hormone.

Conclusion. Due to the relatively high prevalence of relative energy deficiency syndrome in athletes of both sexes and its long-term negative impact on athlete health and performance, further research is needed to improve the effectiveness of early diagnosis, prevention and treatment of pathological conditions associated with malnutrition.

Keywords:relative energy deficiency in sports; athletes; female athlete triad; menstrual dysfunction; osteoporosis

Funding. The study was not sponsored.

Conflict of interest. The authors declare no conflict of interest.

For citation: Samoilov A.S., Zholinsky A.V., Rylova N.V., Bolshakov I.V. Relative energy deficiency in sport: modern approaches to diagnostics, treatment and prevention. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (3): 32–41. DOI: https://doi.org/10.33029/0042-8833-2022-91-3-32-41 (in Russian)

References

1. Vardardottir B., Gudmundsdottir S.L., Olafsdottir A.S. Health and performance consequences of Relative Energy Deficiency in Sport (RED-s). Laeknabladid. 2020; 106 (9): 406–13. DOI: https://doi.org/10.17992/lbl.2020.09.596

2. Yeager K.K., Agostini R., Nattiv A., Drinkwater B. The Female Athlete Triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993; 25 (7): 775–7. DOI: https://doi.org/10.1249/00005768-199307000-00003

3. Dipla K., Kraemer R.R., Constantini N.W. Hackney A.C. Relative energy deficiency in sports (RED-S): elucidation of endocrine changes affecting the health of males and females. Hormones (Athens). 2021; 20 (1): 35–47. DOI: https://doi.org/10.1007/s42000-020-00214-w

4. Mountjoy M., Sundgot-Borgen J., Burke L., Carter S., Constantini N., Lebrun C., et al.; The IOC Consensus Statement. Beyond the female athlete triad – relative energy deficiency in sport. Br J Sports Med. 2014; 48 (7): 491–7. DOI: https://doi.org/10.1136/bjsports-2014-093502

5. Logue D., Madigan S.M., Delahunt E., Heinen M., Mc Donnell S.J., Corish C.A. Low energy availability in athletes: a review of prevalence, dietary patterns, physiological health, and sports performance. Sports Med. 2018; 48 (1): 73–96. DOI: https://doi.org/10.1007/s40279-017-0790-3

6. Logue D.M., Madigan S.M., Melin A., Delahunt E., Heinen M., Donnell S.M., et al. Low Energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance. Nutrients. 2020; 12 (3): 835. DOI: https://doi.org/10.3390/nu12030835

7. Melin A.K., Heikura I.A., Tenforde A., Mountjoy M. Energy availability in athletics: health, performance, and physique. Int J Sport Nutr Exerc Metab. 2019; 29 (2): 152–64. DOI: https://doi.org/10.1123/ijsnem.2018-0201.

8. Burke L.M., Close G.L., Lundy B., Mooses M., Morton J.P., Tenforde A.S. Relative energy deficiency in sport in male athletes: a commentary on its presentation among selected groups of male athletes. Int J Sport Nutr Exerc Metab. 2018; 28 (4): 364–74. DOI: https://doi.org/10.1123/ijsnem.2018-0182

9. Ackerman K.E., Holtzman B., Cooper K.M., Flynn E.F., Bruinvels G., Tenforde A.S., et al. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br J Sports Med. 2019; 53 (10): 628–33. DOI: https://doi.org/10.1136/bjsports-2017-098958

10. Mountjoy M., Sundgot-Borgen J.K., Burke L.M., Ackerman K.E., Blauwet C., Constantini N., et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018; 52 (11): 687–97. DOI: https://doi.org/10.1136/bjsports-2018-099193

11. Gordon C.M., Ackerman K.E., Berga S.L., Kaplan J.R., Mastorakos G., Misra M., et al. Functional hypothalamic amenorrhea: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2017; 102 (5): 1413–39. DOI: https://doi.org/10.1210/jc.2017-00131

12. Gusev D.V., Kuznetsov S.Yu., Ivanets T.Yu., Chernukha G.E. Differential diagnosis of various forms of functional hypothalamic amenorrhea. Ginekologiya [Gynecology]. 2019; 21 (4): 14–8. DOI: https://doi.org/10.26442/20795696.2019.3.190525 (in Russian)

13. Sygo J., Coates A.M., Sesbreno E., Mountjoy M.L., Burr J.F. Prevalence of indicators of low energy availability in elite female sprinters. Int J Sport Nutr Exerc Metab. 2018; 28 (5): 490–6. DOI: https://doi.org/10.1123/ijsnem.2017-0397

14. Roberts R.E., Farahani L., Webber L., Jayasena C. Current understanding of hypothalamic amenorrhoea. Ther Adv Endocrinol Metab. 2020; 11: 2042018820945854. DOI: https://doi.org/10.1177/2042018820945854

15. Heikura I.A., Uusitalo A.L.T., Stellingwerff T., Bergland D., Mero A.A., Burke L.M. Low Energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018; 28 (4): 403–11. DOI: https://doi.org/10.1123/ijsnem.2017-0313

16. Hackney A.C., Lane A.R., Register-Mihalik J., Oʼleary C.B. Endurance exercise training and male sexual libido. Med Sci Sports Exerc. 2017; 49 (7): 1383–8. DOI: https://doi.org/10.1249/MSS.0000000000001235

17. Hooper D.R., Tenforde A.S., Hackney A.C. Treating exercise-associated low testosterone and its related symptoms. Phys Sportsmed. 2018; 46 (4): 427–34. DOI: https://doi.org/10.1080/00913847.2018.1507234

18. Papageorgiou M., Dolan E., Elliott-Sale K.J., Sale C. Reduced energy availability: implications for bone health in physically active populations. Eur J Nutr. 2018; 57 (3): 847–59. DOI: https://doi.org/10.1007/s00394-017-1498-8

19. Barrack M.T., Fredericson M., Tenforde A.S., Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017; 51 (3): 200–5. DOI: https://doi.org/10.1136/bjsports-2016-096698

20. Tam N., Santos-Concejero J., Tucker R., Lamberts R.P., Micklesfield L.K. Bone health in elite Kenyan runners. J Sports Sci. 2018; 36 (4): 456–61. DOI: https://doi.org/10.1080/02640414.2017.1313998

21. Tenforde A.S., Carlson J.L., Chang A., Sainani K.L., Shultz R., Kim J.H., et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017; 45 (2.): 302–10. DOI: https://doi.org/10.1177/0363546516676262

22. Southmayd E.A., Mallinson R.J., Williams N.I., Mallinson D.J., De Souza M.J. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women. Osteoporos Int. 2017; 28 (4): 1365–76. DOI: https://doi.org/10.1007/s00198-016-3887-x

23. Gibbs J.C., Nattiv A., Barrack M.T., Williams N.I., Rauh M.J., Nichols J.F., et al. Low bone density risk is higher in exercising women with multiple triad risk factors. Med Sci Sports Exerc. 2014; 46 (1): 167–76. DOI: https://doi.org/10.1249/MSS.0b013e3182a03b8b

24. Sekaninova N., Bona Olexova L., Visnovcova Z., Ondrejka I., Tonhajzerova I. Role of neuroendocrine, immune, and autonomic nervous system in anorexia nervosa-linked cardiovascular diseases. Int J Mol Sci. 2020; 21 (19): 7302. DOI: https://doi.org/10.3390/ijms21197302

25. Petkus D.L., Murray-Kolb L.E., De Souza M.J. The Unexplored crossroads of the female athlete triad and iron deficiency: a narrative review. Sports Med. 2017; 47 (9): 1721–37. DOI: https://doi.org/10.1007/s40279-017-0706-2

26. Castanier C., Bougault V., Teulier C., Jaffré C., Schiano-Lomoriello S., Vibarel-Rebot N., et al. The specificities of elite female athletes: a multidisciplinary approach. Life (Basel). 2021; 11 (7): 622. DOI: https://doi.org/10.3390/life11070622

27. Staal S., Sjödin A., Fahrenholtz I., Bonnesen K., Melin A.K. Low RMRratio as a surrogate marker for energy deficiency, the choice of predictive equation vital for correctly identifying male and female ballet dancers at risk. Int J Sport Nutr Exerc Metab. 2018; 28 (4): 412–8. DOI: https://doi.org/10.1123/ijsnem.2017-0327

28. Navid M.N., Kurylenkova A.G., Gorshunova E.M., Kurikhin I.V. Anorexia nervosa: nutritional characteristics during weight recovery. Meditsina. Sotsiologiya. Filosofiya. Prikladnye issledovaniya [Medicine. Sociology. Philosophy. Applied Research]. 2018; (2): 30–5 (in Russian)

29. Goolsby M.A., Boniquit N. Bone health in athletes. Sports Health. 2017; 9 (2): 108–17. DOI: https://doi.org/10.1177/1941738116677732

30. Peterson K., Fuller R. Anorexia nervosa in adolescents: an overview. Nursing. 2019; 49 (10): 24–30. DOI: https://doi.org/10.1097/01.NURSE.0000580640.43071.15

31. Briggs C., James C., Kohlhardt S., Pandya T. Relative energy deficiency in sport (RED-S) – a narrative review and perspectives from the UK. Dtsch Z Sportmed. 2020; 71: 243–8. DOI: https://doi.org/10.5960/dzsm.2020.459

32. Statuta S.M., Asif I.M., Drezner J.A. Relative energy deficiency in sport (RED-S). Br J Sports Med. 2017; 51 (21): 1570–1. DOI: https://doi.org/10.1136/bjsports-2017-097700

33. Melin A., Tornberg A.B., Skouby S., Moller S.S., Sundgot-Borgen J., Faber J., et al. Energy availability and the female athlete triad in elite endurance athletes. Scand J Med Sci Sports. 2015; 25 (5): 610–22. DOI: https://doi.org/10.1111/sms.12261

34. Jain R.K., Vokes T. Dual-energy X-ray absorptiometry. J Clin Densitom. 2017; 20 (3): 291–303. DOI: https://doi.org/10.1016/j.jocd.2017.06.014

35. Kanis J.A., Cooper C., Rizzoli R., Reginster J.Y.; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019; 30 (1): 3–44. DOI: https://doi.org/10.1007/s00198-018-4704-5

36. Meyer N.L., Sundgot-Borgen J., Lohman T.G., Ackland T.R., Stewart A.D., Maughan R.J., et al. Body composition for health and performance: a survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br J Sports Med. 2013; 47 (16): 1044–53. DOI: https://doi.org/10.1136/bjsports-2013-092561.

37. Cappellini M.D., Musallam K.M., Taher A.T. Iron deficiency anaemia revisited. J Intern Med. 2020; 287 (2): 153–70. DOI: https://doi.org/10.1111/joim.13004

38. Robertson S., Mountjoy M. A Review of prevention, diagnosis, and treatment of relative energy deficiency in sport in artistic (synchronized) swimming. Int J Sport Nutr Exerc Metab. 2018; 28 (4): 375–84. DOI: https://doi.org/10.1123/ijsnem.2017-0329

39. Mountjoy M., Sundgot-Borgen J., Burke L., Carter S., Constantini N., Lebrun C., et al. The IOC relative energy deficiency in sport clinical assessment tool (RED-S CAT). Br J Sports Med. 2015; 49 (21): 1354.

40. Großkopf A., Simm A. Carbohydrates in nutrition: friend or foe? Z Gerontol Geriatr. 2020; 53 (4): 290–4. DOI: https://doi.org/10.1007/s00391-020-01726-1

41. Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017; 14: 20. DOI: https://doi.org/10.1186/s12970-017-0177-8

42. Thomas D.T., Erdman K.A., Burke L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016; 116 (3): 501–28. DOI: https://doi.org/10.1016/j.jand.2015.12.006

43. Sievenpiper J.L. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutr Rev. 2020; 78 (suppl 1): 69–77. DOI: https://doi.org/10.1093/nutrit/nuz082

44. Vitale K., Getzin A. Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients. 2019; 11 (6): 1289. DOI: https://doi.org/10.3390/nu11061289

45. Kerksick C.M., Arent S., Schoenfeld B.J., Stout J.R., Campbell B., Wilborn C.D., et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017; 14: 33. DOI: https://doi.org/10.1186/s12970-017-0189-4

46. Di Luigi L., Antinozzi C., Piantanida E., Sgrò P. Vitamin D, sport and health: a still unresolved clinical issue. J Endocrinol Invest. 2020; 43 (12): 1689–702. DOI: https://doi.org/10.1007/s40618-020-01347-w

47. Wrzosek M., Woźniak J., Kozioł-Kaczorek D., Włodarek D. The assessment of the supply of calcium and vitamin d in the diet of women regularly practicing sport. J Osteoporos. 2019; 2019: 9214926. DOI: https://doi.org/10.1155/2019/9214926

48. Popova A.Yu., Tutel’yan V.A., Nikityuk D.B. On the new (2021) Norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 6–19. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-6-19 (in Russian)

49. Bytomski J.R. Fueling for performance. Sports Health. 2018. Vol. 10, N 1. P. 47–53. DOI: https://doi.org/10.1177/1941738117743913

50. Shubham K., Anukiruthika T., Dutta S., Kashyap A., Moses J.A., Anandharamakrishnan C. Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci Technol. 2020; 99: 58–75. DOI: https://doi.org/10.1016/j.tifs.2020.02.021

51. Ackerman K.E., Singhal V., Slattery M., Eddy K.T., Bouxsein M.L., Lee H., et al. Effects of estrogen replacement on bone geometry and microarchitecture in adolescent and young adult oligoamenorrheic athletes: a randomized trial. J Bone Miner Res. 2020; 35 (2): 248–60. DOI: https://doi.org/10.1002/jbmr.3887

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»