Social jetlag: possibilities of micronutrient support

Abstract

The concept of social jetlag refers to asynchronous communication of a person’s biological clock with tempo of modern living, which occurs mainly as a result of intensive work. At the core of social jetlag is sleep deprivation or chronic sleep restriction caused by social factors: pervasive use of electronic solutions and networks, intensive round the clock operation, chronic diseases.

The aim of the work was to determine vitamins, minerals, and other micronutrients, the availability of which is important for supporting the organism in case of circadian rhythm sleep disorders and sleep restrictions, the so-called social jetlag.

Material and methods. The analysis of 78 sources from PubMed and Google Scholar bibliographic bases was carried out with a detailed analysis of data from the published studies.

Results. Circadian rhythm sleep disorders and sleep restrictions affects cognitive functions, increasing risk of anxiety and depressive disorders, enhances processes of chronic inflammation, oxidative stress, cardiometabolic disorders. Scientific evidence has been collected that lack of such elements as magnesium, folates, omega-3 polyunsaturated fatty acids and probiotics in diet can worsening effects of social jetlag and increase the risk of chronic diseases. Preventive course intake of this micronutrients is reasonable in people predisposed to social jetlag.

Conclusion. In risk groups of people predisposed to social jetlag, along with diverse diet and adequate nutrition, sleep hygiene, it is necessary to provide targeted supplementation with magnesium, folates, omega-3 polyunsaturated fatty acids and probiotic products.

Keywords:social jetlag; magnesium; folates; omega-3 polyunsaturated fatty acids; probiotics; curcumin

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Shiсh E.V., Makhova A.A., Shikh N.V., Nikitin E.Yu. Social jetlag: possibilities of micronutrient support. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (3): 85–95. DOI: https://doi.org/10.33029/0042-8833-2022-91-3-85-95 (in Russian)

References

1. Penninx B.W. Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev. 2017; 74: 277–86. DOI: https://doi.org/10.1016/j.neubiorev.2016. 07.003

2. Hemmer A., Mareschal J., Dibner C., Pralong J.A., Dorribo V., Perrig S., et al. The effects of shift work on cardio-metabolic diseases and eating patterns. Nutrients. 2021; 13 (11): 4178. DOI: https://doi.org/10.3390/nu13114178.

3. Moreno C.R.C., Marqueze E.C., Sargent C., Wright K.P. Jr, Ferguson S.A., Tucker P. Working Time Society consensus statements: evidence-based effects of shift work on physical and mental health. Ind Health. 2019; 57 (2): 139–57. DOI: https://doi.org/10.2486/indhealth.SW-1

4. Pallesen S., Bjorvatn B., Waage S., Harris A., Sagoe D. Prevalence of shift work disorder: a systematic review and meta-analysis. Front Psychol. 2021; 12: 638252. DOI: https://doi.org/10.3389/fpsyg.2021.638252

5. Yu J.H., Yun C.H., Ahn J.H., Suh S., Cho H.J., Lee S.K., et al. Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J Clin Endocrinol Metab. 2015; 100 (4): 1494–502. DOI: https://doi.org/10.1210/jc.2014-3754

6. Vaccarino V., Bremner J.D. Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci Biobehav Rev. 2017; 74: 297–309. DOI: https://doi.org/10.1016/j.neubiorev.2016.04.023

7. Morris C.J., Purvis T.E., Mistretta J., Hu K., Scheer F.A.J.L. Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J Biol Rhythm. 2017; 32 (2): 154–64. DOI: https://doi.org/10.1177/0748730417697537

8. Bescos R., Boden M.J., Jackson M.L., Trewin A.J., Marin E.C., Levinger I., et al. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol (Oxf). 2018; 223 (2): e13039. DOI: https://doi.org/10.1111/apha.13039

9. Vetter C., Devore E.E., Wegrzyn L.R., Massa J., Speizer F.E., Kawachi I., et al. Association between rotating night shift work and risk of coronary heart disease among women. JAMA. 2016; 315 (16): 1726–34. DOI: https://doi.org/10.1001/jama.2016.4454

10. Gehlert S., Clanton M.; on Behalf of the Shift Work and Breast Cancer Strategic Advisory Group. Shift work and breast cancer. Int J Environ Res Public Health. 2020; 17 (24): 9544. DOI: https://doi.org/10.3390/ijerph17249544

11. Chen C., ValizadehAslani T., Rosen G.L., Anderson L.M., Jungquist C.R. Healthcare shift workers’ temporal habits for eating, sleeping, and light exposure: a multi-instrument pilot study. J Circadian Rhythms. 2020; 18: 6. DOI: https://doi.org/10.5334/jcr.199

12. Shikh E.V., Khaytovich E.D. The use of non-contraceptive effects of COC with metapholine in women with functional menstrual cycle disorders. Problemy reproduktsii [Problems of Reproduction]. 2019; 25 (5): 78–85. DOI: https://doi.org/10.17116/repro20192505178 (in Russian)

13. Allshouse A., Pavlovic J., Santoro N. Menstrual cycle hormone changes associated with reproductive aging and how they may relate to symptoms. Obstet Gynecol Clin North Am. 2018; 45 (4): 613–28. DOI: https://doi.org/10.1016/j.ogc.2018.07.004

14. Gromova O.A., Torshin I.Yu., Kobalava Z.D., Sorokina M.A., Villeval’de S.V., Galochkin S.A., et al. Deficit of magnesium and states of hypercoagulation: intellectual analysis of data obtained from a sample of patients aged 18-50 years from medical and preventive facilities in Russia. Kardiologiya [Cardiology]. 2018; 58 (4): 22–35. DOI: https://doi.org/10.18087/cardio.2018.4.10106 (in Russian)

15. Pogozheva A.V., Kodentsova V.M. About recommended consumption and provision of population with potassium and magnesium. RMZh [Russian Medical Journal]. 2020; (3): 8–12. (in Russian)

16. Shikh E.V., Makhova A.A. Long-chain ω-3 polyunsaturated fatty acids in the prevention of diseases in adults and children: a view of the clinical pharmacologist. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (2): 91–100. DOI: https://doi.org/10.24411/0042-8833-2019-10022 (in Russian)

17. Reddi A.S. Disorders of magnesium: hypomagnesemia. In: Fluid, Electrolyte and Acid-Base Disorders. New York, NY: Springer, 2014. DOI: https://doi.org/10.1007/978-1-4614-9083-8_24

18. Fiorentini D., Cappadone C., Farruggia G., Prata C. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients. 2021; 13 (4): 1136. DOI: https://doi.org/10.3390/nu13041136

19. Stroebel D., Casado M., Paoletti P. Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol. 2018; 2: 1–12. DOI: https://doi.org/10.1016/j.cophys.2017.12.004

20. Olloquequi J., Cornejo-Córdova E., Verdaguer E., Soriano F.X., Binvignat O., Auladell C., et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol. 2018; 32: 265–75. DOI: https://doi.org/10.1177/ 0269881118754680

21. Gröber U., Schmidt J., Kisters K. Magnesium in prevention and therapy. Nutrients. 2015; 7: 8199–226. DOI: https://doi.org/10.3390/nu7095388

22. Serefko A., Szopa A., Poleszak E. Magnesium and depression. Magnes Res. 2016; 29 (3): 112–9. DOI: https://doi.org/10.1684/mrh.2016.0407

23. Nielsen F.H. Guidance for the determination of status indicators and dietary requirements for magnesium. Magnes Res. 2016; 29: 154–60. DOI: https://doi.org/10.1684/mrh.2016.0416

24. Costello R.B., Elin R.J., Rosanoff A., Wallace T.C., Guerrero- Romero F., Hruby A., et al. Perspective: the case for an evidence-based reference interval for serum magnesium: the time has come. Adv Nutr. 2016; 7: 977–93. DOI: https://doi.org/10.3945/an.116.012765

25. Razzaque M.S. Magnesium: are we consuming enough? Nutrients. 2018; 10: 1863. DOI: https://doi.org/10.3390/nu10121863

26. Popova A.Yu., Tutel’yan V.A., Nikityuk D.B. On the new (2021) Norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 6–19. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-6-19 (in Russian)

27. DiNicolantonio J.J., O’Keefe J.H., Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018; 5: e000668. DOI: https://doi.org/10.1136/openhrt-2017-000668

28. Castellanos-Gutiérrez A., Sánchez-Pimienta T.G., Carriquiry A., Da Costa T.H.M., Ariza A.C. Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J. 2018; 17: 114. DOI: https://doi.org/10.1186/s12937-018-0422-2

29. Dong J.Y., Xun P., He K., Qin L.Q. Magnesium intake and risk of type 2 diabetes meta-analysis of prospective cohort studies. Diabetes Care. 2011; 34 (9): 2116–22. DOI: https://doi.org/10.2337/dc11-0518

30. Schulze M.B., Schulz M., Heidemann C., Schienkiewitz A., Hoffmann K., Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007; 167 (9): 956–65. DOI: https://doi.org/10.1001/archinte.167.9.956

31. Guerreroromero F., Simentalmendia L.E., Hernández-Ronquillo G., Rodriguezmoran M. Oral magnesium supplementation improves glycaemic status in subjects with prediabetes and hypomagnesaemia: a double-blind placebo-controlled randomized trial. Diabetes Metab. 2015; 41: 202–7. DOI: https://doi.org/10.1016/j.diabet.2015.03.010

32. Gromova O.A., Kudrin A.V. Neurochemistry of macro- and microelements. Moscow: Alev-V, 2001: 300 p. (in Russian)

33. Gromova O.A., Torshin I., Tetruashvili N.K. Use of riboflavinum and magnesium citrate in obstetrics and gynecology. Ginekologiya [Gynecology]. 2018; 20 (6): 60–6. DOI: https://doi.org/10.26442/20795696.2018.6.000045 (in Russian)

34. Schutten J.C., Joris P.J., Groendijk I., Eelderink C., Groothof D., van der Veen Y., et al. Effects of magnesium citrate, magnesium oxide, and magnesium sulfate supplementation on arterial stiffness: a randomized, double-blind, placebo-controlled intervention trial. J Am Heart Assoc. 2022; 11 (6): e021783. DOI: https://doi.org/10.1161/JAHA.121.021783

35. Pardo M.R., Garicano Vilar E., San Mauro Martín I., Camina Martín M.A. Bioavailability of magnesium food supplements: а systematic review. Nutrition. 2021; 89: 111294. DOI: https://doi.org/10.1016/j.nut.2021.111294

36. Shikh E.V., Makhova A.A. Key micronutrients of the reproductive period – folates and docosahexaenoic omega-3 polyunsaturated acid – in prevention of perinatal depression. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2020; 19 (2): 78–84. DOI: https://doi.org/10.20953/1726-1678-2020-2-78-84 (in Russian)

37. Zhang X., Wang Y., Zhao R., Hu X., Zhang B., Lv X., et al. Folic acid supplementation suppresses sleep deprivation-induced telomere dysfunction and senescence-associated secretory phenotype (SASP). Oxid Med Cell Longev. 2019; 2019: 4569614. DOI: https://doi.org/10.1155/2019/4569614

38. Zhu Y., Liu X., Ding X., Wang F., Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019; 20 (1): 1–16. DOI: https://doi.org/10.1007/s10522-018-9769-1

39. Tempaku P.F., Mazzotti D.R., Tufik S. Telomere length as a marker of sleep loss and sleep disturbances: a potential link between sleep and cellular senescence. Sleep Med. 2015; 16 (5): 559–63. DOI: https://doi.org/10.1016/j.sleep.2015.02.519

40. Li Z., Zhou D., Zhang D., Zhao J., Li W., Sun Y., et al. Folic acid inhibits aging-induced telomere attrition and apoptosis in astrocytes in vivo and in vitro. Cereb Cortex. 2022; 32 (2): 286–97. DOI: https://doi.org/10.1093/cercor/bhab208

41. Brocardo P.S., Budni J., Pavesi E., Franco J.L., Uliano-Silva M., Trevisan R., et al. Folic acid administration prevents ouabain-induced hyperlocomotion and alterations in oxidative stress markers in the rat brain. Bipolar Disord. 2010; 12 (4): 414–24. DOI: https://doi.org/10.1111/j.1399-5618.2010.00827.x

42. He X., Xie Z., Dong Q., Li J., Li W., Chen P. Effect of folic acid supplementation on renal phenotype and epigenotype in early weanling intrauterine growth retarded rats. Kidney Blood Press Res. 2015; 40 (4): 395–402. DOI: https://doi.org/10.1159/000368516

43. Khosravi M., Sotoudeh G., Amini M., Raisi F., Mansoori A., Hosseinzadeh M. The relationship between dietary patterns and depression mediated by serum levels of folate and vitamin B12. BMC Psychiatry. 2020; 20 (1): 63. DOI: https://doi.org/10.1186/s12888-020-2455-2

44. Schefft C., Kilarski L.L., Bschor T.B., Köhler S. Efficacy of adding nutritional supplements in unipolar depression: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2017; 27: 1090–109. DOI: https://doi.org/10.1016/j.euroneuro.2017.07.004

45. Midhun T., Krishna S.S., Wilson S.K. Tetrahydrobiopterin and its multiple roles in neuropsychological disorders. Neurochem Res. 2022; 47 (5): 1202–11. DOI: https://doi.org/10.1007/s11064-022-03543-x

46. Kwok T., Wu Y., Lee J., Lee R., Yung C.Y., Choi G., et al. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clin Nutr. 2019; 39 (8): 1–7. DOI: https://doi.org/10.1016/j.clnu.2019.11.005

47. Sivolap Yu.P. Antidepressants: the goals and possibilities of therapy. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova [Journal of Neurology and Psychiatry named after S.S. Korsakov]. 2018; 118 (12): 120‑4. DOI: https://doi.org/10.17116/jnevro2018118121120 (in Russian)

48. Wesson V.A., Levitt A.J., Joffe R.T. Change in folate status with antidepressant treatment. Psychiatry Res. 1994; 53 (3): 313–22. DOI: https://doi.org/10.1016/0165-1781(94)90058-2

49. Okereke O.I., Cook N.R., Albert C.M., Van Denburgh M., Buring J.E., Manson J.E. Effect of long-term supplementation with folic acid and B vitamins on risk of depression in older women. Br J Psychiatry. 2015; 206: 324–31. DOI: https://doi.org/10.1192/bjp.bp.114.148361

50. Coppen A., Bailey J. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J Affect Disord. 2000; 60: 121–30. DOI: https://doi.org/10.1016/S0165-0327(00)00153-1

51. Almeida O.P., Ford A.H., Hirani V., Singh V., van Bockxmeer F.M., McCaul K., Flicker L. B vitamins to enhance treatment response to antidepressants in middle-aged and older adults: Results from the B-VITAGE randomised, double-blind, placebo-controlled trial. Br J Psychiatry. 2014; 205: 450–7. DOI: https://doi.org/10.1192/bjp.bp.114.145177

52. Mech A.W., Farah A. Correlation of clinical response with homocystein reduction during therapy with reduced B vitamins in patients with MDD who are positive for MTHFR C677T or A1298C polymorphism: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2016; 77: 668–71. DOI: https://doi.org/10.4088/JCP.15m10166

53. Shikh E.V., Makhova A.A., Chemeris A.V., Tormyshov I.A. Iatrogenic deficits of micronutrients. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (4): 53–63. DOI: https://doi.org/10.33029/0042-8833-2021-90-4-53-63 (in Russian)

54. Martone G. Enhancement of recovery from mental illness with l-methylfolate supplementation. Perspect Psychiatr Care. 2018; 54 (2): 331–4. DOI: https://doi.org/10.1111/ppc.12227

55. Shikh E.V., Makhova A.A. Adequate intake of omega-3 by a pregnant women as an epigenetic factor of the health of her future baby. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2019; 18 (3): 98–105. DOI: https://doi.org/10.20953/1726-1678-2019-3-98–105 (in Russian)

56. Chen J., Wei Y., Chen X., Jiao J., Zhang Y. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget. 2017; 8 (5): 7301–14. DOI: https://doi.org/10.18632/oncotarget.14236

57. Lin P.-Y., Su K.-P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry. 2007; 68: 1056–61. DOI: https://doi.org/10.4088/JCP.v68n0712

58. Carney R.M., Freedland K.E., Rubin E.H., Rich M.W., Steinmeyer B.C., Harris W.S. A randomized placebo-controlled trial of omega-3 and sertraline in depressed patients with or at risk for coronary heart disease. J Clin Psychiatry. 2019; 80: 19m12742. DOI: https://doi.org/10.4088/JCP.19m12742

59. Giltay E.J., Geleijnse J.M., Kromhout D. Effects of n-3 fatty acids on depressive symptoms and dispositional optimism after myocardial infarction. Am J Clin Nutr. 2011; 94: 1442–50. DOI: https://doi.org/10.3945/ajcn.111.018259

60. Sublette M.E., Hibbeln J.R., Galfalvy H., Oquendo M.A., Mann J.J. Omega-3 polyunsaturated essential fatty acid status as a predictor of future suicide risk. Am J Psychiatry. 2006; 163: 1100–2. DOI: https://doi.org/10.1176/ajp.2006.163.6.1100

61. Rapaport M.H., Nierenberg A.A., Schettler P.J., Kinkead B., Cardoos A., Walker R., et al. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry. 2016; 21: 71–9. DOI: https://doi.org/10.1038/mp.2015.22

62. Kiecolt-Glaser J.K., Belury M.A., Andridge R., Malarkey W.B., Glaser R. Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun. 2011; 25 (8): 1725–34. DOI: https://doi.org/10.1016/j.bbi.2011.07.229

63. Zengin H., Akpınar M.A. Fatty acid composition of Oncorhynchus mykiss during embryogenesis and other developmental stages. Biologia. 2006; 61 (3): 305–11. DOI: https://doi.org/10.2478/s11756-006-0056-2

64. RU2078130C1, Russia, MPK-8 S11S3 / 10, Method for production of concentrate of ethyl esters of polyunsaturated higher fatty acids / N.V. Serebryannikov. No. 9404325/43; Statement 12/07/1994; Published 04/27/1997.

65. Shehzad A., Rehman G., Lee Y.S. Curcumin in inflammatory diseases. Biofactors. 2013; 39 (1): 69–77. DOI: https://doi.org/10.1002/biof.1066 Epub 2012 Dec 22. PMID: 23281076.

66. Bhutani M.K., Bishnoi M., Kulkarni S.K. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009; 92: 39–43. DOI: https://doi.org/10.1016/j.pbb.2008.10.007

67. Kulkarni S.K., Bhutani M.K., Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology. 2008; 201: 435. DOI: https://doi.org/10.1007/s00213-008-1300-y

68. Hannestad J., DellaGioia N., Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011; 36: 2452–9. DOI: https://doi.org/10.1038/npp.2011.132

69. Zhang W.Y., Guo Y.J., Han W.X., Yang M.Q., Wen L.P., Wang K.Y., et al. Curcumin relieves depressive-like behaviors via inhibition of the NLRP3 inflammasome and kynurenine pathway in rats suffering from chronic unpredictable mild stress. Int Immunopharmacol. 2019; 67: 138–44. DOI: https://doi.org/10.1016/j.intimp.2018.12.012

70. Ng Q.X., Koh S.S.H., Chan H.W., Ho C.Y.X. Clinical use of curcumin in depression: a meta-analysis. J Am Med Dir Assoc. 2017; 18: 503–8. DOI: https://doi.org/10.1016/j.jamda.2016.12.071

71. Fusar-Poli L., Vozza L., Gabbiadini A., Vanella A., Concas I., Tinacci S., et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020; 60 (15): 2643–53. DOI: https://doi.org/10.1080/10408398.2019.1653260

72. Lopresti A.L. Potential role of curcumin for the treatment of major depressive disorder. CNS Drugs. 2022; 36: 123–41. DOI: https://doi.org/10.1007/s40263-022-00901-9

73. Shikh E.V., Makhova A.A., Sharonova S.S. Oral probiotics in women’s health: experimental evidence and results from clinical trials. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2021; 20 (2): 102–9. DOI: https://doi.org/10.20953/1726-1678- 2021-2-102-109 (in Russian)

74. Wallace C.J.K., Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry. 2017; 16: 14. DOI: https://doi.org/10.1186/s12991-017-0138-2

75. McKean J., Naug H., Nikbakht E., Amiet B., Colson N. Probiotics and subclinical psychological symptoms in healthy participants: a systematic review and meta-analysis. J Altern Complement Med. 2017; 23 (4): 249–58. DOI: https://doi.org/10.1089/acm.2016.0023

76. Huang R., Wang K., Hu J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016; 8 (8): 483. DOI: https://doi.org/10.3390/nu8080483

77. Muscogiuri G., Barrea L., Aprano S., Framondi L., Di Matteo R., Laudisio D., et al.; on Behalf of the Opera Prevention Project. Chronotype and adherence to the Mediterranean diet in obesity: results from the opera prevention project. Nutrients. 2020; 12 (5): 1354. DOI: https://doi.org/10.3390/nu12051354

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»