Amaranth grain proteins: prospects for use in specialized food products

Abstract

Amaranth is a widespread genus of predominantly annual herbaceous plants belonging to the Amaranthaceae family, which is one of the most widely used pseudocereals along with quinoa and buckwheat in nutrition.

The aim of the research was to review and analyze the results of the studies on the characteristics of amaranth grain proteins, the effect of various food processing methods on their quality, and the prospects for using amaranth protein hydrolysates in therapeutic nutrition.

Material and methods. For the main search for the literature, the PubMed bibliographic database was used, which covers about 75% of the world’s medical publications. In addition, Scopus and Web of Science databases and non-commercial search engine Google Scholar were used. The depth of the search was 15 years.

Results. The paper presents a brief review of modern approaches for obtaining amaranth protein isolates and concentrates, including the use of a complex of physicochemical methods: grinding, sifting, extraction at high pH values, defatting, ultrafiltration, centrifugation, isoelectric precipitation, and drying of the protein product. A comparative characteristic of amino acid content of protein fractions of pseudocereals is presented. Basically, leucine, isoleucine, and valine are limiting amino acids for the grain protein of various varieties of amaranth. When substantiating and developing modern effective food technologies for processing amaranth grain, the studies dedicated to the evaluation of their impact on the biological value of amaranth protein deserve special attention. Methods of grain fermentation, sprouting, steaming, malting, boiling can be used to increase the bioavailability and digestibility of its ingredients. The results of in vitro and in vivo studies indicate the presence of hypotensive, hypolipidemic and antioxidant activity of the amaranth protein and its hydrolysates what determines the prospects for their use as part of foods for special dietary uses and therapeutic nutrition. An analysis of the scientific publications presented in the review indicates an increase in demand for high-quality gluten-free products and an increase in the range of mass-consumption foods, such as bakery, pasta, flour confectionery, with pseudo-cereals in their composition, including amaranth.

Conclusion. The high biological value and technological properties of amaranth protein concentrates/isolates determine the prospects for their use to create a wide range of specialized foods for various purposes.

Keywords:amaranth; amaranth proteins; amino acid composition; hydrolysates; hypotensive activity; hypolipidemic properties; antioxidant; dietary food for special use; mass-consumption food; gluten-free; celiac disease

Funding. This work was supported by Russian Science Foundation (project No. 21-76-10049 "Physiological and biochemical study of the effectiveness of new specialized products based on the complex processing of amaranth seeds").

Conflict of interest. Authors declare no conflict of interest.

For citation: Sidorova Yu.S., Biryulina N.A., Zilova I.S., Mazo V.K. Amaranth grain proteins: prospects for use in specialized food products. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (3): 96–106. DOI: https://doi.org/10.33029/0042-8833-2022-91-3-96-106 (in Russian)

References

1. Costea M., DeMason D.A. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae), taxonomic significance. J Torrey Bot Soc. 2001; 128 (3): 254–81. DOI: https://doi.org/10.2307/3088717

2. Gunina L.M., Dmitriev A.B., Shustov E.B., Kholodkov A.B., Golovashchenko R.B. Prospects of application of diet supplements based on amaranth in the practice of training athletes. JMBS. 2018; 3 (7): 267–77. DOI: https://doi.org/10.26693/jmbs03.07.267

3. Magomedov I.M., Chirkova T.V. Amaranth – the past, the present and the future. Uspekhi sovremennogo estestvoznaniya [Successes of Modern Natural Science]. 2015; 1 (7): 1108–13. (in Russian)

4. Martínez-Villaluenga C, Peñas E, Hernández-Ledesma B. Pseudocereal grains: nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol. 2020; 137: 111178. DOI: https://doi.org/10.1016/j.fct.2020.111178

5. Coelho L.M., Silva P.M., Martins J.T., Pinheiro A.C., Vicente A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018; 9 (11): 5499–512. DOI: https://doi.org/10.1039/c8fo01422a

6. Joshi D.C., Sood S., Hosahatti R., Kant L., Pattanayak A., Kumar A., et al. From zero to hero: the past, present and future of grain amaranth breeding. Theor Appl Genet. 2018; 131 (9): 1807–23. DOI: https://doi.org/10.1007/s00122-018-3138-y

7. Janssen F., Pauly A., Rombouts I., Jansens K.J.A., Deleu L.J., Delcour J.A. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): a food science and technology perspective. Compr Rev Food Sci Food Saf. 2017; 16 (1): 39–58. DOI: https://doi.org/10.1111/1541-4337.12240

8. Venskutonis P.R., Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr Rev Food Sci Food Saf. 2013; 12 (4): 381–412. DOI: https://doi.org/10.1111/1541-4337.12021

9. Nardo A.E., Suárez S., Quiroga A.V., Añón MC. Amaranth as a source of antihypertensive peptides. Front Plant Sci. 2020; 11: 578631. DOI: https://doi.org/10.3389/fpls.2020.578631

10. Velarde-Salcedo A.J., Regalado-Rentería E., Velarde-Salcedo R., Juárez-Flores B.I., Barrera-Pacheco A., González de Mejía E., et al. Consumption of amaranth induces the accumulation of the antioxidant protein paraoxonase/arylesterase 1 and modulates dipeptidyl peptidase IV activity in plasma of streptozotocin-induced hyperglycemic rats. J Nutrigenet Nutrigenomics. 2017; 10 (5–6): 181–93. DOI: https://doi.org/10.1159/000486482

11. Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. In: WHO Technical Report Series. 2007: 935 p.

12. Constantino A.B.T., Garcia-Rojas E.E. Proteins from pseudocereal seeds: solubility, extraction, and modifications of the physicochemical and techno-functional properties. J Sci Food Agric. 2022; 102 (7): 2630–9. DOI: https://doi.org/10.1002/jsfa.11750

13. Johnson J., Wallace T. Whole Grains and their Bioactives: Composition and Health. John Wiley & Sons, 2019: 493 p. DOI: https://doi.org/10.1002/9781119129486

14. Saunders R.M., Becker R. Amaranthus: a potential food and feed resource. Adv Cereal Sci. 1984; 6: 377–96.

15. Aguilar E.G., Albarracín G.deJ., Uñates M.A., Piola H.D., Camiña J.M., Escudero N.L. Evaluation of the nutritional quality of the grain protein of new amaranths varieties. Plant Foods Hum Nutr. 2015; 70 (1): 21–6. DOI: https://doi.org/10.1007/s11130-014-0456-3

16. Motta C., Castanheira I., Gonzales G.B., Delgado I., Torres D., Santos M., et al. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J Food Compos Anal. 2019; 76: 58–65. DOI: https://doi.org/10.1016/j.jfca.2018.10.001

17. Thakur P., Kumar K., Ahmed N., Chauhan D., Eain Hyder Rizvi Q.U., Jan S., et al. Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Curr Res Food Sci. 2021; 4: 917–25. DOI: https://doi.org/10.1016/j.crfs.2021.11.019

18. Öztürk-Kerimoğlu B., Nacak B., Özyurt V.H., Serdaroğlu M. Protein oxidation and in vitro digestibility of heat-treated fermented sausages: how do they change with the effect of lipid formulation during processing? J Food Biochem. 2019; 43 (11): e13007. DOI: https://doi.org/10.1111/jfbc.13007

19. Cortez-Trejo M.C., Mendoza S., Loarca-Pina G., Figueroa-Cardenas J.D. Physicochemical characterization of protein isolates of amaranth and common bean and a study of their compatibility with xanthan gum. Int J Biol Macromol. 2021;166:861-868. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.242

20. Das D., Mir N.A., Chandla N.K., Singh S. Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates. Food Chem. 2021; 353: 129466. DOI: https://doi.org/10.1016/j.foodchem.2021.129466

21. Tapia-Blácido D.R., Sobral P.J., Menegalli F.C. Potential of Amaranthus cruentus BRS Alegria in the production of flour, starch and protein concentrate: chemical, thermal and rheological characterization. J Sci Food Agric. 2010; 90 (7): 1185–93. DOI: https://doi.org/10.1002/jsfa.3946

22. Mendonça S., Saldiva P.H., Cruz R.J., Arêas J.A.G. Amaranth protein presents cholesterol-lowering effect. Food Chem. 2009; 116 (3): 738–42. DOI: https://doi.org/10.1016/j.foodchem.2009.03.021

23. Tironi V.A., Añón M.C. Amaranth proteins as a source of antioxidant peptides: effect of proteolysis. Food Res Int. 2010; 43 (1): 315–22. DOI: https://doi.org/10.1016/j.foodres.2009.10.001

24. Lado M.B., Burini J., Rinaldi G., Añón M.C., Tironi V.A. Effects of the dietary addition of Amaranth (Amaranthus mantegazzianus) protein isolate on antioxidant status, lipid profiles and blood pressure of rats. Plant Foods Hum Nutr. 2015; 70 (4): 371–9. DOI: https://doi.org/10.1007/s11130-015-0516-3

25. Coțovanu I., Mironeasa S. Impact of different amaranth particle sizes addition level on wheat flour dough rheology and bread features. Foods. 2021; 10 (7): 1539. DOI: https://doi.org/10.3390/foods10071539

26. Guardianelli L.M., Salinas M.V., Puppo M.C. Quality of wheat breads enriched with flour from germinated amaranth seeds. Food Sci Technol Int. 2021; May 18: 10820132211016577. DOI: https://doi.org/10.1177/10820132211016577

27. De Bock P., Daelemans L., Selis L., Raes K., Vermeir P., Eeckhout M., et al. Comparison of the chemical and technological characteristics of wholemeal flours obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) seeds. Foods. 2021; 10 (3): 651. DOI: https://doi.org/10.3390/foods10030651

28. Miranda D.V., Rojas M.L., Pagador S., Lescano L., Sanchez-Gonzalez J., Linares G. Gluten-free snacks based on brown rice and amaranth flour with incorporation of cactus pear peel powder: physical, nutritional, and sensorial properties. Int J Food Sci. 2018;2018:7120327. DOI: https://doi.org/10.1155/2018/7120327

29. Aguiar E.V., Santos F.G., Centeno A.C.L.S., Capriles V.D. Influence of pseudocereals on gluten-free bread quality: a study integrating dough rheology, bread physical properties and acceptability. Food Res Int. 2021; 150 (A): 110762. DOI: https://doi.org/10.1016/j.foodres.2021.110762

30. García-Mantrana I., Monedero V., Haros M. Application of phytases from bifidobacteria in the development of cereal-based products with amaranth. Eur Food Res Technol. 2014; 238 (5): 853–62. DOI: https://doi.org/10.1007/s00217-014-2167-2

31. Bilgiçli N., İbanoğlu Ş. Effect of pseudo cereal flours on some physical, chemical and sensory properties of bread. J Food Sci Techol. 2015; 52 (11): 7525–9. DOI: https://doi.org/10.1007/s13197-015-1770-y

32. Piga A., Conte P., Fois S., Catzeddu P., Del Caro A., Sanguinetti A.M., et al. Technological, nutritional and sensory properties of an innovative gluten-free double-layered flat bread enriched with amaranth flour. Foods. 2021; 10 (5): 920. DOI: https://doi.org/10.3390/foods10050920

33. Martinez C.S., Ribotta P.D., Añón M.C., León A.E. Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta. Food Sci Technol Int. 2014; 20 (2): 127–35. DOI: https://doi.org/10.1177/1082013213476072

34. D’Amico S., Mäschle J., Jekle M., Tomoskozi S., Langó B., Schoenlechner R. Effect of high temperature drying on gluten-free pasta properties. LWT Food Sci Technol. 2015; 63 (1): 391–9. DOI: https://doi.org/10.1016/j.lwt.2015.03.080

35. Bogdan P., Kordialik-Bogacka E., Czyżowska A., Oracz J., Żyżelewicz D. The profiles of low molecular nitrogen compounds and fatty acids in wort and beer obtained with the addition of Quinoa (Chenopodium quinoa Willd.), Amaranth (Amaranthus cruentus L.) or Maltose syrup. Foods. 2020; 9 (11): 1626. DOI: https://doi.org/10.3390/foods9111626

36. Vallons K.J.R., Ryan L.A., Arendt E.K. Promoting structure formation by high pressure in gluten-free flours. LWT Food Sci Technol. 2011; 44 (7): 1672–80. DOI: https://doi.org/10.1016/j.lwt.2010.11.024

37. Cabrera-Chávez F., de la Barca A.M.C., Islas-Rubio A.R., Marti A., Marengo M., Pagani M.A., et al. Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. LWT Food Sci Technol. 2012; 47 (2): 421–6. DOI: https://doi.org/10.1016/j.lwt.2012.01.040

38. Han L., Cheng Y., Qiu S., Tatsumi E., Shen Q., Lu Z., et al. The effects of vital wheat gluten and transglutaminase on the thermomechanical and dynamic rheological properties of buckwheat dough. Food Bioprocess Tech. 2013; 6 (2): 561–9. DOI: https://doi.org/10.1007/s11947-011-0738-9

39. Taylor J.R.N., Taylor J., Campanella O.H., Hamaker B.R. Functionality of the storage proteins in gluten-free cereals and pseudocereals in dough systems. J Cereal Sci. 2016; 67: 22–34. DOI: https://doi.org/10.1016/j.jcs.2015.09.003

40. Renzetti S., Rosell C.M. Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J Cereal Sci. 2016; 67: 35–45. DOI: https://doi.org/10.1016/j.jcs.2015.09.008

41. Sciarini L.S., Pérez G.T., León A.E. Role of enzymes in improving the functionality of proteins in nonwheat dough systems. In: Trends in Wheat and Bread Making. Academic Press, 2021: 173–98. DOI: https://doi.org/10.1016/B978-0-12-821048-2.00006-4

42. Singh A., Kumari A., Chauhan A.K. Formulation and evaluation of novel functional snack bar with amaranth, rolled oat, and unripened banana peel powder. J Food Sci Technol. 2022; Jan: 1–11. DOI: https://doi.org/10.1007/s13197-021-05344-6

43. Manassero C.A., Añón M.C., Speroni F. Development of a high protein beverage based on amaranth. Plant Foods Hum Nutr. 2020; 75 (4): 599–607. DOI: https://doi.org/10.1007/s11130-020-00853-9

44. Malgor M., Sabbione A.C., Scilingo A. Amaranth lemon sorbet, elaboration of a potential functional food. Plant Foods Hum Nutr. 2020; 75 (3): 404–12. DOI: https://doi.org/10.1007/s11130-020-00818-y

45. Sánchez-Urdaneta A.B., Montero-Quintero K.C., González-Redondo P., Molina E., Bracho-Bravo B., Moreno-Rojas R. Hypolipidemic and hypoglycaemic effect of wholemeal bread with Amaranth (Amaranthus dubius Mart. ex Thell.) on Sprague Dawley rats. Foods. 2020; 9 (6): 707. DOI: https://doi.org/10.3390/foods9060707

46. López D.N., Galante M., Raimundo G., Spelzini D., Boeris V. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates. Food Res Int. 2019; 116: 419–29. DOI: https://doi.org/10.1016/j.foodres.2018.08.056

47. Tovar-Pérez E., Guerrero-Legarreta I., Farrés-González A., Soriano-Santos J. Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem. 2009; 116 (2): 437–44. DOI: https://doi.org/10.1016/j.foodchem.2009.02.062

48. Orsini Delgado M.C., Tironi V.A., Añón M.C. Antioxidant activity of amaranth protein or their hydrolysates under simulated gastrointestinal digestion. LWT Food Sci Technol. 2011; 44 (8): 1752–60. DOI: https://doi.org/10.1016/j.lwt.2011.04.002

49. Fritz M., Vecchi B., Rinaldi G., Añón M.C. Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem. 2011; 126 (3): 878–84. DOI: https://doi.org/10.1016/j.foodchem.2010.11.065

50. Ayala-Niño A., Rodríguez-Serrano G.M., González-Olivares L.G., Contreras-López E., Regal-López P., Cepeda-Saez A. Sequence identification of bioactive peptides from amaranth seed proteins (Amaranthus hypochondriacus spp.). Molecules. 2019; 24 (17): 3033. DOI: https://doi.org/10.3390/molecules24173033

51. Silva-Sánchez C., de la Rosa A.P., León-Galván M.F., de Lumen B.O., de León-Rodríguez A., de Mejía E.G. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem. 2008; 56 (4): 1233–40. DOI: https://doi.org/10.1021/jf072911z

52. Venkatesh R., Kasaboina S., Gaikwad H.K., Janardhan S., Bantu R., Nagarapu L., et al. Design and synthesis of 3-(3-((9H-carbazol-4-yl)oxy)-2-hydroxypropyl)-2-phenylquinazolin-4(3H)-one derivatives to induce ACE inhibitory activity. Eur J Med Chem. 2015; 96: 22–9. DOI: https://doi.org/10.1016/j.ejmech.2015.04.009

53. Suárez S., Aphalo P., Rinaldi G., Quiroga A., Añón M.C. Data set on effect of amaranth proteins on the RAS system. In vitro, in vivo and ex vivo assays. Data Brief. 2020; 29: 105168. DOI: https://doi.org/10.1016/j.dib.2020.105168

54. Sabbione A.C., Scilingo A., Añón M.A. Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. Food Sci Technol. 2015; 60 (1): 171–7. DOI: https://doi.org/10.1016/j.lwt.2014. 07.015

55. Sabbione A.C., Ibañez S.M., Martínez E.N., Añón M.C., Scilingo A.A. Antithrombotic and antioxidant activity of amaranth hydrolysate obtained by activation of an endogenous protease. Plant Foods Hum Nutr. 2016; 71 (2): 174–82. DOI: https://doi.org/10.1007/s11130-016-0540-y

56. Ramírez-Torres G., Ontiveros N., Lopez-Teros V., Ibarra-Diarte J.A., Reyes-Moreno C., Cuevas-Rodríguez E.O., et al. Amaranth protein hydrolysates efficiently reduce systolic blood pressure in spontaneously hypertensive rats. Molecules. 2017; 22 (11): 1905. DOI: https://doi.org/10.3390/molecules22111905

57. Ontiveros N., López-Teros V., Vergara-Jiménez M.deJ., Islas-Rubio A.R., Cárdenas-Torres F.I., Cuevas-Rodríguez E.-O., et al. Amaranth-hydrolyzate enriched cookies reduce the systolic blood pressure in spontaneously hypertensive rats. J Funct Foods. 2019; 64: 103613. DOI: https://doi.org/10.1016/j.jff.2019.103613

58. Valdez-Meza E.E., Raymundo A., Figueroa-Salcido O.G., Ramírez-Torres G.I., Fradinho P., Oliveira S., et al. Pasta enrichment with an amaranth hydrolysate affects the overall acceptability while maintaining antihypertensive properties. Foods. 2019; 8 (8): 282. DOI: https://doi.org/10.3390/foods8080282

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»