Relationship between vitamin D level and lipid profile in young adults

Abstract

Vitamin D deficiency, like cardiovascular disease, is widespread throughout the world. Researches indicate a number of potential mechanisms for the relationship between vitamin D deficiency and cardiometabolic risk factors. The results of studying the relationship between 25-hydroxyvitamin D [25(OH)D] in blood serum and lipid profile indicators are contradictory, studies were mainly carried out among the adult and elderly population.

The aim of the research was to study the relationship between the level of 25(OH)D and lipid spectrum indicators in young people.

Material and methods. The cross-sectional study included 278 young adults (aged from 18 to 24 years), of which 64 (23%) were boys, 214 (77%) were girls. The assessment of lipid spectrum indicators included total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, calculation of the atherogenic index; vitamin D status was evaluated by 25(OH)D blood serum level determination.

Results. The levels of 25(OH)D below the criterion of insufficiency (30 ng/ml) were found in 81% of participants. A weak positive correlation was found between the level of triglycerides and 25(OH)D concentration (ρ=0.181, p=0.003). Gender differences were found in the association of 25(OH)D level with lipid profile parameters. In young men, a negative correlation was found between 25(OH)D level and indicators of total cholesterol (ρ=-0.316, p=0.014) and LDL cholesterol (ρ=-0.348, p=0.007), as well as significantly lower concentrations of 25(OH)D in the group with elevated LDL cholesterol levels.

Conclusion. The results of the study indicate the existence of the relationships between 25(OH)D concentration and various parameters of the lipid spectrum of blood serum. Vitamin D deficiency may be associated with an increased risk of dyslipidemia, especially in males. The relationship between 25(OH)D level and lipid profile scores may differ depending on gender.

Keywords:vitamin D; 25(OH)D; young adults; lipid profile; total cholesterol; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol; triglycerides; atherogenic index

Funding. The study was funded with the participation of the Nothern State Medical University of Ministry of Healthcare of the Russian Federation.

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Malyavskaya S.I., Kostrova G.N.; data collection – Lebedev A.V., Kostrova G.N.; statistical data processing – Kostrova G.N.; writing the text – Kostrova G.N.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Kostrova G.N., Malyavskaya S.I., Lebedev A.V. Relationship between vitamin D level and lipid profile in young adults. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (4): 26–34. DOI: https://doi.org/10.33029/0042-8833-2022-91-4-26-34 (in Russian)

References

1. Surdu A.M., Pînzariu O., Ciobanu D.M., Negru A.G., Căinap S.S., Lazea C., et al. Vitamin D and its role in the lipid metabolism and the development of atherosclerosis. Biomedicines. 2021; 9 (2): 172. DOI: https://doi.org/10.3390/biomedicines9020172

2. de la Guía-Galipienso F., Martínez-Ferran M., Vallecillo N., Lavie C.J., Sanchis-Gomar F, Pareja-Galeano H. Vitamin D and cardiovascular health. Clin Nutr. 2021; 40 (5): 2946–57. DOI: https://doi.org/10.1016/j.clnu.2020.12.025

3. Mahmood S.S., Levy D., Vasan R.S., Wang T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014; 383 (9921): 999–1008. DOI: https://doi.org/10.1016/S0140-6736(13)61752-3

4. Wang Y., Si S., Liu J., Wang Z., Jia H., Feng K., et al. The Associations of serum lipids with vitamin D status. PLoS One. 2016; 11 (10): e0165157. DOI: https://doi.org/10.1371/journal.pone.0165157

5. Lupton J., Faridi K.F., Martin S.S., Sharma S., Kulkarni K., Jones S.R., et al. Deficient serum 25-hydroxyvitamin D is associated with an atherogenic lipid profile: the Very Large Database of Lipids (VLDL-3) study. J Clin Lipidol. 2016; 10 (1): 72–81.e1. DOI: https://doi.org/10.1016/j.jacl.2015.09.006

6. Jiang X., Peng M., Chen S., Wu S., Zhang W. Vitamin D deficiency is associated with dyslipidemia: a cross-sectional study in 3788 subjects. Curr Med Res Opin. 2019; 35 (6): 1059–63. DOI: https://doi.org/10.1080/03007995.2018.1552849

7. Vogt S., Baumert J., Peters A., Thorand B., Scragg R. Effect of waist circumference on the association between serum 25-hydroxyvitamin D and serum lipids: results from the National Health and Nutrition Examination Survey 2001–2006. Public Health Nutr. 2017; 20 (10): 1797–806. DOI: https://doi.org/10.1017/S1368980016001762

8. Ponda M.P., Huang X., Odeh M.A., Breslow J.L., Kaufman H.W. Vitamin D may not improve lipid levels: a serial clinical laboratory data study. Circulation. 2012; 126 (3): 270–7. DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.077875

9. Mai X.M., Videm V., Sheehan N.A., Chen Y., Langhammer A., Sun Y.Q. Potential causal associations of serum 25-hydroxyvitamin D with lipids: a Mendelian randomization approach of the HUNT study. Eur J Epidemiol. 2019; 34 (1): 57–66. DOI: https://doi.org/10.1007/s10654-018-0465-x

10. Asbaghi O., Kashkooli S., Choghakhori R., Hasanvand A., Abbasnezhad A. Effect of calcium and vitamin D co-supplementation on lipid profile of overweight/obese subjects: a systematic review and meta-analysis of the randomized clinical trials. Obes Med. 2019; 15: 100124. DOI: https://doi.org/10.1016/j.obmed.2019.100124

11. Dibaba D.T. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. Nutr Rev. 2019; 77 (12): 890–902. DOI: https://doi.org/10.1093/nutrit/nuz037

12. Al Mheid I., Quyyumi A.A. Vitamin D and cardiovascular disease: controversy unresolved. J Am Coll Cardiol. 2017; 70 (1): 89–100. DOI: https://doi.org/10.1016/j.jacc.2017.05.031

13. Manson J.E., Bassuk S.S., Cook N.R., Lee I.M., Mora S., Albert C.M., et al. Vitamin D, Marine n-3 fatty acids, and primary prevention of cardiovascular disease current evidence. Circ Res. 2020; 126 (1): 112–28. DOI: https://doi.org/10.1161/CIRCRESAHA.119.314541

14. Silvagno F., Pescarmona G. Spotlight on vitamin D receptor, lipid metabolism and mitochondria: some preliminary emerging issues. Mol Cell Endocrinol. 2017; 450: 24–31. DOI: https://doi.org/10.1016/j.mce.2017.04.013

15. Warren T., McAllister R., Morgan A., Rai T.S., McGilligan V., Ennis M., et al. The interdependency and co-regulation of the vitamin D and cholesterol metabolism. Cells. 2021; 10 (8): 2007. DOI: https://doi.org/10.3390/cells10082007

16. Jiang W., Miyamoto T., Kakizawa T., Nishio S.I., Oiwa A., Takeda T., et al. Inhibition of LXRalpha signaling by vitamin D receptor: possible role of VDR in bile acid synthesis. Biochem Biophys Res Commun. 2006; 351 (1): 176–84. DOI: https://doi.org/10.1016/j.bbrc.2006.10.027

17. Li S., He Y., Lin S., Hao L., Ye Y., Lv L., et al. Increase of circulating cholesterol in vitamin D deficiency is linked to reduced vitamin D receptor activity via the Insig-2/SREBP-2 pathway. Mol Nutr Food Res. 2016; 60 (4): 798–809. DOI: https://doi.org/10.1002/mnfr.201500425

18. Quach H.P., Dzekic T., Bukuroshi P., Pang K.S. Potencies of vitamin D analogs, 1α-hydroxyvitamin D3 , 1α-hydroxyvitamin D2 and 25-hydroxyvitamin D3 , in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm Drug Dispos. 2018; 39 (4): 196–204. DOI: https://doi.org/10.1002/bdd.2126

19. Defay R., Astruc M.E., Roussillon S., Descomps B., Crastes de Paulet A. DNA synthesis and 3-hydroxy-3-methylglutaryl CoA reductase activity in PHA stimulated human lymphocytes: a comparative study of the inhibitory effects of some oxysterols with special reference to side chain hydroxylated derivatives. Biochem Biophys Res Commun. 1982; 106 (2): 362–72. DOI: https://doi.org/10.1016/0006-291x(82)91118-4

20. Cho H.J., Kang H.C., Choi S.A., Ju Y.C., Lee H.S., Park H.J. The possible role of Ca2+ on the activation of microsomal triglyceride transfer protein in rat hepatocytes. Biol Pharm Bull. 2005; 28 (8): 1418–23. DOI: https://doi.org/10.1248/bpb.28.1418

21. Christensen R., Lorenzen J.K., Svith C.R., Bartels E.M., Melanson E.L., Saris W.H., et al. Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials. Obes Rev. 2009; 10 (4): 475–86. DOI: https://doi.org/10.1111/j.1467-789X.2009.00599.x

22. Song S.J., Si S., Liu J., Chen X., Zhou L., Jia G., et al. Vitamin D status in Chinese pregnant women and their newborns in Beijing and their relationships to birth size. Public Health Nutr. 2013; 16 (4): 687–92. DOI: https://doi.org/10.1017/S1368980012003084

23. Zittermann A., Frisch S., Berthold H.K., Götting C., Kuhn J., Kleesiek K., et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009; 89 (5): 1321–7. DOI: https://doi.org/10.3945/ajcn.2008.27004

24. Black L.J., Burrows S., Lucas R.M., Marshall C.E., Huang R.C., Chan She Ping-Delfos W., et al. Serum 25-hydroxyvitamin D concentrations and cardiometabolic risk factors in adolescents and young adults. Br J Nutr. 2016; 115 (11): 1994–2002. DOI: https://doi.org/10.1017/S0007114516001185

25. Kozlov A.I., Vershubskaya G.G., Negasheva M.A., Ryzhaenkov V.G. Sex-related differences in the interrelations between the level of 25-hydroxyvitamin d and blood lipids in healthy young subjects. Fiziologiya cheloveka [Human Physiology]. 2016; 42 (3): 339–42. DOI: https://doi.org/10.7868/S0131164616020107 (in Russian)

26. Potolitsyna N.N., Boyko E.R., Orr P. Lipid metabolism indices and their correlation with vitamin D levels in indigenous populations of Northern European Russia. Fiziologiya cheloveka [Human Physiology]. 2011; 37 (2): 184–87. (in Russian)

27. Kukharchuk V.V., Ezhov M.V., Sergienko I.V., et al. Diagnostics and correction of lipid metabolism disorders in order to prevent and treat atherosclerosis. Russian recommendations. VII revision. Ateroskleroz i dislipidemii [Atherosclerosis and Dyslipidemia]. 2020; 1 (38): 7–40. DOI: https://doi.org/10.34687/2219-8202.JAD.2020.01.0002 (in Russian)

28. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A.. Gordon C.M., Hanley D.A., Heaney R.P., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96 (7): 1911–1930. DOI: https://doi.org/10.1210/jc.2011-0385 Erratum in: J. Clin. Endocrinol. Metab. 2011; 96 (12): 3908.

29. Amrein K., Scherkl M., Hoffmann M., Neuwersch-Sommeregger S., Köstenberger M., Tmava Berisha A., et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020; 74 (11): 1498–513. DOI: https://doi.org/10.1038/s41430-020-0558-y

30. Muscogiuri G., Barrea L., Somma C.D., Laudisio D., Salzano C., Pugliese G., et al. Sex Differences of vitamin D status across BMI classes: an observational prospective cohort study. Nutrients. 2019; 11 (12): 3034. DOI: https://doi.org/10.3390/nu11123034

31. Yan X., Zhang N., Cheng S., Wang Z., Qin Y. Gender differences in vitamin D status in China. Med Sci Monit. 2019; 25: 7094–9. DOI: https://doi.org/10.12659/MSM.916326

32. Leary P.F., Zamfirova I., Au J., McCracken W.H. Effect of latitude on vitamin D levels. J Am Osteopath Assoc. 2017; 117 (7): 433–9. DOI: https://doi.org/10.7556/jaoa.2017.089

33. Palmisano B.T., Zhu L., Eckel R.H., Stafford J.M. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018; 15: 45–55. DOI: https://doi.org/10.1016/j.molmet.2018.05.008

34. Vakhtangadze T., Singh Tak R., Singh U., Singh U., Baig M.S., Bezsonov E. Gender differences in atherosclerotic vascular disease: from lipids to clinical outcomes. Front Cardiovasc Med. 2021; 8: 707889. DOI: https://doi.org/10.3389/fcvm.2021.707889

35. Guan C., Fu S., Zhen D., Li X., Niu J., Cheng J., et al. Correlation of serum vitamin D with lipid profiles in middle-aged and elderly Chinese individuals. Asia Pac J Clin Nutr. 2020; 29 (4): 839–45. DOI: https://doi.org/10.6133/apjcn.202012_29(4).0020

36. Jiang X., Peng M., Chen S., Wu S., Zhang W. Vitamin D deficiency is associated with dyslipidemia: a cross-sectional study in 3788 subjects. Curr Med Res Opin. 2019; 35 (6): 1059–63. DOI: https://doi.org/10.1080/03007995.2018.1552849

37. Yang K., Liu J., Fu S., Tang X., Ma L., Sun W., et al. Vitamin D status and correlation with glucose and lipid metabolism in Gansu Province, China. Diabetes Metab Syndr Obes. 2020; 13: 1555–63. DOI: https://doi.org/10.2147/DMSO.S249049

38. Miao J., Bachmann K.N., Huang S., Su Y.R., Dusek J., Newton-Cheh C., et al. Effects of vitamin D supplementation on cardiovascular and glycemic biomarkers. J Am Heart Assoc. 2021; 10 (10): e017727. DOI: https://doi.org/10.1161/JAHA.120.017727

39. Xiao P., Cheng H., Li H., Zhao X., Hou D., Xie X., et al. Vitamin D trajectories and cardiometabolic risk factors during childhood: a large population-based prospective cohort study. Front Cardiovasc Med. 2022; 9: 836376. DOI: https://doi.org/10.3389/fcvm.2022.836376

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»