Methods of gut microbiota correction for treatment and prevention of food allergy: a review of current research

Abstract

Food allergy (FA) is an actual problem in pediatric practice. The gut microbiota plays a crucial role in food sensitization development, since the maturation of immune system occurs under the influence of intestinal microorganisms. Immunoregulatory activity of gut microbiota is associated with the increase of IgA production and promotion of the barrier function of intestinal epithelium. Gut microbiota influence the activity of T-regulatory cells, as well. Violation of gut biocenosis, which occurs under the influence of various factors (artificial feeding, past diseases, the use of antibiotics, etc.), can lead to a shift in the balance of the immune system towards the increase of Th2-profile cytokines and the subsequent formation of hypersensitivity to food allergens. In this regard, the correction of the gut microbiome is a promising method of FA control, due to the ability of intestinal bacteria influence the production of T-regulatory cells and thus suppress allergy immune response.

The aim of the review is to analyze experimental and clinical studies exploring effectiveness of methods modifying intestinal microbiota in order to treat and prevent FA.

Material and methods. The analysis of the literature in eLIBRARY, MedLine and PubMed databases was carried out.

Results. The analysis revealed the lack of rigorous evidence that pre-, pro- and synbiotics significantly increase the effectiveness of standard therapy of FA. However, the use of bifidobacteria, lactobacilli, lactic acid bacteria, in combination with the basic therapy of FA has general positive effect on the clinical outcome, especially in case of gastrointestinal symptoms. Also, the results of some studies indicate the effectiveness of synbiotics (Bifidobacterium breve M-16V, Lactobacillus rhamnosus GG in combination with oligosaccharides) for the prevention of FA in patients at risk of developing allergic diseases in the long-term period.

Conclusion. At present, fecal microbiota transplantation is promising method for FA treatment. Polysaccharides fermented by the microflora, are also actively studied. Experimental studies and clinical trials are required to obtain substantiated conclusions about feasibility of these methods for treatment and prevention of FA.

Keywords:food allergy; microbiota; gut; children; treatment; prevention

Funding. The article was not sponsored.

Conflict of interest. The authors declare no conflicts of interest.

Contribution. The concept and design of the study – Fedotova M.M.; data collection – Fedotova M.M., Prokopieva V.D., Boguta V.D., Dochkin V.A.; text writing – all authors; editing, approval of the final version of the article – Fedotova M.M., Fedorova O.S.; responsibility for the integrity of all parts of the article – all authors.

For citation: Fedotova M.M., Prokopyeva V.D., Dochkin V.A., Boguta V.D., Fedorova O.S. Methods of gut microbiota correction for treatment and prevention of food allergy: a review of current research. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (5): 16–28. DOI: https://doi.org/10.33029/0042-8833-2022-91-5-16-28 (in Russian)

References

1. Baranov A.A., Namazova-Baranova L.S., Khaitov R.M., Il’ina N.I., Kurbacheva O.M., Kovtun O.P., et al. Modern principles of managing children with food allergies. Pediatricheskaya farmakologiya [Pediatric Pharmacology]. 2021; 18 (3): 245–63. DOI: https://doi.org/10.15690/pf.v18i1.2286 (in Russian)

2. Clinical recommendations: Food allergy. Moscow: Soyuz pediatrov Rossii, 2021: 65 p. (in Russian)

3. Sicherer S.H., Warren C.M., Dant C., Gupta R.S., Nadeau K.C. Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract. 2020; 8 (6): 1854–64. DOI: https://doi.org/10.1016/j.jaip.2020.02.010

4. Revyakina V.A. The problem of food allergies at the present stage. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (4): 186–92. DOI: https://doi.org/10.24411/0042-8833-2020-10052 (in Russian)

5. Yakushin A.S, Denisov M.Yu. Influence of intestinal microbiota on the immune system of the child in the first thousand days of life and the possibility of probiotic correction. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum [Pediatrics. Supplement to the Journal Consilium Medicum]. 2018; (2): 43–6. DOI: https://doi.org/10.26442/2413-8460_2018.2.43-46 (in Russian)

6. Méndez C.S., Bueno S.M., Kalergis A.M. Contribution of gut microbiota to immune tolerance in infants. J Immunol Res. 2021; 2021: 7823316. DOI: https://doi.org/10.1155/2021/7823316

7. Senn V., Bassler D., Choudhury R., Scholkmann F., Righini-Grunder F., Vuille-Dit-Bile R.N., et al. Microbial colonization from the fetus to early childhood – a comprehensive review. Front Cell Infect Microbiol. 2020; 10: 573735. DOI: https://doi.org/10.3389/fcimb.2020.573735 Erratum in: Front Cell Infect Microbiol. 2021; 11: 715671.

8. Zakharova I.N., Osmanov I.M., Berezhnaya I.V., Kol’tsov K.A., Dedikova O.V., Kuchina A.E., et al. C-section. Is the choice justified? Health risks for children. Meditsinskiy sovet [Medical Council]. 2018; (17): 16–21. (in Russian)

9. Tun H.M., Konya T., Takaro T.K., Brook J.R., Chari R., Field C.J., et al. Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome. 2017; 5 (1): 40. DOI: https://doi.org/10.1186/s40168-017-0254-x

10. Avershina E., Ravi A., Storro O., Oien T., Johnsen R., Rudi K. Potential association of vacuum cleaning frequency with an altered gut microbiota in pregnant women and their 2-year-old children. Microbiome. 2015; 3 (1): 65. DOI: https://doi.org/10.1186/s40168-015-0125-2

11. George S., Aguilera X., Gallardo P., Farfán M., Lucero Y., Torres J.P., et al. Bacterial gut microbiota and infections during early childhood. Front Microbiol. 2022; 12: 793050. DOI: https://doi.org/10.3389/fmicb.2021.793050

12. Patangia D.V., Anthony Ryan C., Dempsey E., Paul Ross R., Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022; 11 (1): e1260. DOI: https://doi.org/10.1002/mbo3.1260

13. Yudin S.M., Zagaynova A.V., Makarov V.V., Fedets Z.E., Pan’kova M.N., Aslanova M.M., et al. Features of the composition of bacterial and parasitic intestinal microbiota of children with atopic dermatitis and food allergy. Meditsinskaya parazitologiya i parazitarnye bolezni [Medical Parasitology and Parasitic Diseases]. 2021; (2): 37–49. DOI: https://doi.org/10.33092/0025-8326mp2021.2.37-49 (in Russian)

14. Prokop’eva V.D., Fedorova O.S., Petrov V.A., Fedotova M.M., Ogorodova L.M. The effect of microbiotic communities on the development of allergies in children: a review of cohort studies. Pediatriya. Zhurnal imeni G.N. Speranskogo [Pediatrics Journal named after G.N. Speransky]. 2020; 99 (2): 236–42. DOI: https://doi.org/10.24110/0031-403x-2020-99-2-236-242 (in Russian)

15. Savage J.H., Lee-Sarwar K.A., Sordillo J., Bunyavanich S., Zhou Y., O’Connor G., et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018; 73 (1): 145–52. DOI: https://doi.org/10.1111/all.13232

16. Chen C.C., Chen K.J., Kong M.S., Chang H.J., Huang J.L. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr Allergy Immunol. 2016; 27 (3): 254–62. DOI: https://doi.org/10.1111/pai.12522

17. Tanaka M., Korenori Y., Washio M., Kobayashi T., Momoda R., Kiyohara C., et al. Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. FEMS Microbiol Ecol. 2017; 93 (8). DOI: https://doi.org/10.1093/femsec/fix099

18. Kourosh A., Luna R.A., Balderas M., Nance C., Anagnostou A., Devaraj S., et al. Fecal microbiome signatures are different in food – allergic children compared to siblings and healthy children. Pediatr Allergy Immunol. 2018; 29: 545–54. DOI: https://doi.org/10.1111/pai.12904

19. Bunyavanich S., Berin M.C. Food allergy and the microbiome: current understandings and future directions. J Allergy Clin Immunol. 2019; 144 (6): 1468–77. DOI: https://doi.org/10.1016/j.jaci.2019.10.019

20. Abdel-Gadir A., Stephen-Victor E., Gerber G.K., Noval Rivas M., Wang S., Harb H., et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat Med. 2019; 25 (7): 1164–74. DOI: https://doi.org/10.1038/s41591-019-0461-z

21. Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., et al. The microbiota regulates type 2 immunity through RORγt T cells. Science. 2015; 349 (6251): 989–93. DOI: https://doi.org/10.1126/science.aac4263

22. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., et al. T-reg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500 (7461): 232–6. DOI: https://doi.org/10.1038/nature12331

23. Fujimura K.E., Sitarik A.R., Havstad S., Lin D.L., Levan S., Fadrosh D., et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016; 22 (10): 1187–91. DOI: https://doi.org/10.1038/nm.4176

24. Stefka A.T., Feehley T., Tripathi P., Qiu J., McCoy K., Mazmanian S.K., et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. 2014; 111 (36): 13 145–50. DOI: https://doi.org/10.1073/pnas.1412008111

25. Porter N.T., Martens E.C. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu Rev Microbiol. 2017; 71: 349–69. DOI: https://doi.org/10.1146/annurev-micro-102215-095316

26. Lee D., Kim H.S., Shin E., Do S.G., Lee C.K., Kim Y.M., et al. Polysaccharide isolated from aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice. Biomed Pharmacother. 2018; 101: 201–10. DOI: https://doi.org/10.1016/j.biopha.2018.02.061

27. Cheng C.H., Wu H.Y., Wu C.F., Jan T.R. Pacific oyster-derived polysaccharides attenuate allergen-induced intestinal inflammation in a murine model of food allergy. J Food Drug Anal. 2016; 24 (1): 121–8. DOI: https://doi.org/10.1016/j.jfda.2015.08.006

28. Liu Q.M., Yang Y., Maleki S.J., Alcocer M., Xu S.S., Shi C.L., et al. Anti-food allergic activity of sulfated polysaccharide from Gracilaria lemaneiformis is dependent on immunosuppression and inhibition of p38 MAPK. J Agric Food Chem. 2016; 64: 4536–44. DOI: https://doi.org/10.1021/acs.jafc.6b01086

29. Cockburn D.W., Koropatkin N.M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol. 2016; 428: 3230–52. DOI: https://doi.org/10.1016/j.jmb.2016.06.021

30. Tan J., McKenzie C., Vuillermin P.J., Goverse G., Vinuesa C.G., Mebius R.E., et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016; 15 (12): 2809–24. DOI: https://doi.org/10.1016/j.celrep.2016.05.047

31. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341 (6145): 569–73.

32. Goverse G., Molenaar R., Macia L., Tan J., Erkelens M.N., Konijn T., et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol. 2017; 198: 2172–81. DOI: https://doi.org/10.4049/jimmunol.1600165

33. Zhu Z., Zhu B., Hu C., Liu Y., Wang X., Zhang J., et al. Short-chain fatty acids as a target for prevention against food allergy by regulatory T cells. JGH Open. 2019; 3 (3): 190–5. DOI: https://doi.org/10.1002/jgh3.12130

34. Yuan X., Tang H., Wu R., Li X., Jiang H., Liu Z., et al. Short-chain fatty acids calibrate RARα activity regulating food sensitization. Front Immunol. 2021; 12: 737658. DOI: https://doi.org/10.3389/fimmu.2021.737658

35. Roduit C., Frei R., Ferstl R., Loeliger S., Westermann P., Rhyner C., et al. PASTURE/EFRAIM study group. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74 (4): 799–809. DOI: https://doi.org/10.1111/all.13660

36. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018; 23 (6): 716–24. DOI: https://doi.org/10.1016/j.chom.2018.05.003

37. Crestani E., Harb H., Charbonnier L.M., Leirer J., Motsinger-Reif A., Rachid R., et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol. 2020; 145 (3): 897–906. DOI: https://doi.org/10.1016/j.jaci.2019.10.014

38. Buyuktiryaki B., Sahiner U.M., Girgin G., Birben E., Soyer O.U., Cavkaytar O., et al. Low indoleamine 2,3-dioxygenase activity in persistent food allergy in children. Allergy. 2016; 71 (2): 258–66. DOI: https://doi.org/10.1111/all.12785

39. Shimada Y., Kinoshita M., Harada K., Mizutani M., Masahata K., Kayama H., et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013; 8 (11): e80604. DOI: https://doi.org/10.1371/journal.pone.0080604

40. Campbell C., McKenney P.T., Konstantinovsky D., Isaeva O.I., Schizas M., Verter J., et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020; 581 (7809): 475–9. DOI: https://doi.org/10.1038/s41586-020-2193-0

41. Song X., Sun X., Oh S.F., Wu M., Zhang Y., Zheng W., et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020; 577 (7790): 410–5. DOI: https://doi.org/10.1038/s41586-019-1865-0

42. Hussain M., Bonilla-Rosso G., Kwong Chung C.K.C., Bäriswyl L., Rodriguez M.P., Kim B.S., et al. High dietary fat intake induces a microbiota signature that promotes food allergy. J Allergy Clin Immunol. 2019; 144 (1): 157–70.e8. DOI: https://doi.org/10.1016/j.jaci.2019.01.043

43. Fox A., Bird J.A., Fiocchi A., Knol J., Meyer R., Salminen S., et al. The potential for pre-, pro- and synbiotics in the management of infants at risk of cow’s milk allergy or with cow’s milk allergy: an exploration of the rationale, available evidence and remaining questions. World Allergy Organ J. 2019; 12 (5): 100034. DOI: https://doi.org/10.1016/j.waojou.2019.100034

44. Gmoshinsky I.V., Skvortsova V.A., Borovik T.E., Bokovskaya O.A. Breast milk oligosaccharides in infant formula: yesterday, today, tomorrow. Lechashchiy vrach [Attending Physician]. 2022; (2): 40–8. DOI: https://doi.org/10.51793/os.2022.25.2.007 (in Russian)

45. Wopereis H., Sim K., Shaw A., Warner J.O., Knol J., Kroll J.S. Intestinal microbiota in infants at high risk for allergy: effects of prebiotics and role in eczema development. J Allergy Clin Immunol. 2018; 141 (4): 1334–42.e5. DOI: https://doi.org/10.1016/j.jaci.2017.05.054

46. Arslanoglu S., Moro G.E., Boehm G., Wienz F., Stahl B., Bertino E. Early neutral prebiotic oligosaccharide supplementation reduces the incidence of some allergic manifestations in the first 5 years of life. J Biol Regul Homeost Agents. 2012; 26: 49–59.

47. Moro G., Arslanoglu S., Stahl B., Jelinek J., Wahn U., Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child. 2006; 91: 814–9. DOI: https://doi.org/10.1136/adc.2006.098251

48. Boyle R.J., Tang M.L., Chiang W.C., Chua M.C., Ismail I., Nauta A., et al.; PATCH Study Investigators. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: a randomized controlled trial. Allergy. 2016; 71 (5): 701–10. DOI: https://doi.org/10.1111/all.12848

49. Ranucci G., Buccigrossi V., Borgia E., Piacentini D., Visentin F., Cantarutti L., et al. Galacto-oligosaccharide/polidextrose enriched formula protects against respiratory infections in infants at high risk of atopy:

a randomized clinical trial. Nutrients. 2018; 10: E286. DOI: https://doi.org/10.3390/nu10030286

50. Yang B., Xiao L., Liu S., Liu X., Luo Y., Ji Q., et al. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. Am J Transl Res. 2017; 9: 376–85.

51. Fu L., Peng J., Zhao S., Zhang Y., Su X., Wang Y. Lactic acid bacteria-specific induction of CD4+Foxp3+T cells ameliorates shrimp tropomyosin induced allergic response in mice via suppression of mTOR signaling. Sci Rep. 2017; 7: 1987. DOI: https://doi.org/10.1038/s41598-017-02260-8

52. Zhang J., Su H, Li Q., Wu H., Liu M., Huang J., et al. Oral administration of Clostridium butyricum CGMCC0313.1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathog. 2017; 9: 11. DOI: https://doi.org/10.1186/s13099-017-0160-6

53. Esber N., Mauras A., Delannoy J., Labellie C., Mayeur C, Caillaud M.A., et al. Three candidate probiotic strains impact gut microbiota and induce anergy in mice with cow’s milk allergy. Appl Environ Microbiol. 2020; 86 (21): e01203-20. DOI: https://doi.org/10.1128/AEM.01203-20

54. Shin H.S., Eom J.E., Shin D.U., Yeon S.H., Lim S.I., Lee S.Y. Preventive effects of a probiotic mixture in an ovalbumin-induced food allergy model. J Microbiol Biotechnol. 2018; 28: 65–76. DOI: https://doi.org/10.4014/jmb.1708.08051

55. Fu G., Zhao K., Chen H., Wang Y., Nie L., Wei H., et al. Effect of 3 Lactobacilli on immunoregulation and intestinal microbiota in a beta-lactoglobulin-induced allergic mouse model. J Dairy Sci. 2019; 102: 1943–58. DOI: https://doi.org/10.3168/jds.2018-15683

56. Hol J., van Leer E.H., Elink Schuurman B.E., de Ruiter L.F., Samsom J.N., Hop W., et al.; Cow’s Milk Allergy Modified by Elimination and Lactobacilli Study Group. The acquisition of tolerance toward cow’s milk through probiotic supplementation: a randomized, controlled trial. J Allergy Clin Immunol. 2008; 121 (6): 1448–54. DOI: https://doi.org/10.1016/j.jaci.2008.03.018

57. Berni Canani R., Nocerino R., Terrin G., Coruzzo A., Cosenza L., Leone L., et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol. 2012; 129 (2): 580–2.e1–5. DOI: https://doi.org/10.1016/j.jaci.2011.10.004

58. Berni Canani R., Di Costanzo M., Bedogni G., Amoroso A., Cosenza L., Di Scala C., et al. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol. 2017; 139 (6): 1906–13.e4. DOI: https://doi.org/10.1016/j.jaci.2016.10.050

59. Tang M.L., Ponsonby A.L., Orsini F., Tey D., Robinson M., Su E.L., et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015; 135 (3): 737–44.e8. DOI: https://doi.org/10.1016/j.jaci.2014.11.034

60. Loke P., Orsini F., Lozinsky A.C., Gold M., O’Sullivan M.D., Quinn P., et al. Probiotic peanut oral immunotherapy versus oral immunotherapy and placebo in children with peanut allergy in Australia (PPOIT-003): a multicentre, randomised, phase 2b trial. Lancet Child Adolesc Health. 2022; 6 (3): 171–84. DOI: https://doi.org/10.1016/S2352-4642(22)00006-2

61. Sestito S., D’Auria E., Baldassarre M.E., Salvatore S., Tallarico V., Stefanelli E., et al. The role of prebiotics and probiotics in prevention of allergic diseases in infants. Front Pediatr. 2020; 8: 583946. DOI: https://doi.org/10.3389/fped.2020.583946

62. Candy D.C.A., Van Ampting M.T.J., Oude Nijhuis M.M., Wopereis H., Butt A.M., Peroni D.G., et al. A synbiotic-containing amino-acid-based formula improves gut microbiota in non-IgE-mediated allergic infants. Pediatr Res. 2018; 83: 677–86. DOI: https://doi.org/10.1038/pr.2017.270

63. Fox A.T., Wopereis H., Van Ampting M.T.J., Oude Nijhuis M.M., Butt A.M., Peroni D.G., et al. A specific synbiotic-containing amino acid-based formula in dietary management of cow’s milk allergy: a randomized controlled trial. Clin Transl Allergy. 2019; 9: 5. DOI: https://doi.org/10.1186/s13601-019-0241-3

64. Revyakina V.A., Mukhortykh V.A., Lar’kova I.A., Sentsova T.B., Vorozhko I.V., Kuvshinova E.D. Assessment of inflammatory biomarkers when using multi-strain probiotic in complex food allergy therapy in children. Pediatriya. Zhurnal imeni G.N. Speranskogo [Pediatrics Journal named after G.N. Speransky]. 2020; 99 (2): 68–74. DOI: https://doi.org/10.24110/0031-403x-2020-99-2-68-74 (in Russian)

65. Mukhortykh V.A., Lar’kova I.A., Revyakina V.A. An experience of using a multi-strain probiotic in children with gastrointestinal manifestations of food allergy. Voprosy detskoy dietologii [Pediatric Nutrition]. 2018; 16 (4): 57–61. DOI: https://doi.org/10.20953/1727-5784-2018-4-57-61 (in Russian)

66. Makarova S.G., Emel’yashenkov E.E., Fisenko A.P., Ereshko O.A., Gordeeva I.G., Yasakov D.S., et al. Synbiotics in complex therapy for atopic dermatitis and food allergy in children. Voprosy detskoy dietologii [Problems of Pediatric Nutrition]. 2021; 19 (6): 16–25. DOI: https://doi.org/10.20953/1727-5784-2021-6-16-25 (in Russian)

67. Rozé J.C., Barbarot S., Butel M.J., Kapel N., Waligora-Dupriet A.J., De Montgolfier I., et al. An alpha-lactalbumin-enriched and symbiotic-supplemented v. a standard infant formula: a multicentre, double-blind, randomised trial. Br J Nutr. 2012; 107: 1616–22. DOI: https://doi.org/10.1017/S000711451100479X

68. Kukkonen K., Savilahti E., Haahtela T., Juntunen-Backman K., Korpela R., Poussa T., et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2007; 119 (1): 192–8. DOI: https://doi.org/10.1016/j.jaci.2006.09.009

69. van der Aa L.B., van Aalderen W.M., Heymans H.S., Henk Sillevis Smitt J., Nauta A.J., Knippels L.M., et al. Synbiotics prevent asthma-like symptoms in infants with atopic dermatitis. Allergy. 2011; 66 (2): 170–7. DOI: https://doi.org/10.1111/j.1398-9995.2010.02416.x

70. Migacheva N.B., Zhestkov A.V., Kaganova T.I. The effectiveness of a combined approach to the primary prevention of atopic dermatitis in children at risk. Allergiya i immunologiya v meditsine [Allergology and Immunology in Pediatrics]. 2017; 4 (51): 16–24. (in Russian)

71. Cuello-Garcia C.A., Brożek J.L., Fiocchi A., Pawankar R., Yepes-Nuñez J.J., Terracciano L., et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2015; 136: 952–61. DOI: https://doi.org/10.1016/j.jaci.2015.04.031

72. Cuello-Garcia C., Fiocchi A., Pawankar R., Yepes-Nuñez J.J., Morgano G.P., Zhang Y., et al. Prebiotics for the prevention of allergies: A systematic review and meta-analysis of randomized controlled trials. Clin Exp Allergy. 2017; 47 (11): 1468–77. DOI: https://doi.org/10.1111/cea.13042

73. Sestito S., D’Auria E., Baldassarre M.E., Salvatore S., Tallarico V., Stefanelli E., et al. The role of prebiotics and probiotics in prevention of allergic diseases in infants. Front Pediatr. 2020; 8: 583946. DOI: https://doi.org/10.3389/fped.2020.583946

74. Kim J.-H., Kim K., Kim W. Gut microbiota restoration through fecal microbiota transplantation: a new atopic dermatitis therapy. Exp Mol Med. 2021; 53: 907–16. DOI: https://doi.org/10.1038/s12276-021-00627-6

75. Liu S.X., Li Y.H., Dai W.K., Li X.S., Qiu C.Z., Ruan M.L., et al. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J Gastroenterol. 2017; 23 (48): 8570–81. DOI: https://doi.org/10.3748/wjg.v23.i48.8570

76. Mashiah J., Karady T., Fliss-Isakov N., Sprecher E., Slodownik D., Artzi O., et al. Clinical efficacy of fecal microbial transplantation treatment in adults with moderatetosevere atopic dermatitis. Immun Inflamm Dis. 2022; 10 (3): e570. DOI: https://doi.org/10.1002/iid3.570

77. Evaluating the Safety and Efficacy of Oral Encapsulated Fecal Microbiota Transplant in Peanut Allergic Patients [Electronic resource]. In: ClinicalTrials.gov. Identifier: NCT02960074. 09.11.2016. URL: https://clinicaltrials.gov/ct2/show/NCT02960074

78. Cuello-Garcia C.A., Fiocchi A., Pawankar R., Yepes-Nuñez J.J., Morgano G.P., Zhang Y., et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Prebiotics. World Allergy Organ J. 2016; 9: 10. DOI: https://doi.org/10.1186/s40413-016-0102-7

79. Ricci G., Cipriani F., Cuello-Garcia C.A., Brożek J.L., Fiocchi A., Pawankar R., et al. A clinical reading on «World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics». World Allergy Organ J. 2016; 9: 9. DOI: https://doi.org/10.1186/s40413-016-0101-8

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»