Amaranth, quinoa and buckwheat grain products: role in human nutrition and maintenance of the intestinal microbiome

Abstract

Pseudocereals such as amaranth, quinoa and buckwheat have been used as food since ancient times and in recent years there has been an increasing focus on their ability to have positive health effects. Moreover, some of the functional effects of pseudocereals could be mediated by effects on the gut microbiota.

The review aims to assess the features of the chemical composition of amaranth, quinoa and buckwheat grain that determine their potential for maintaining the optimal composition of the intestinal microbiota, as well as to analyze the results of published studies evaluating the effects of pseudocereals on the intestinal microbiota.

Material and methods. Scopus, Web of Science, PubMed, RSCI databases, and food composition databases were used for collection and analysis of scientific information.

Results. The research presents an overview of the chemical composition of amaranth, quinoa and buckwheat grain regarding their influence on the intestinal microbiota. Compared to traditional cereals, the grain of these pseudocereals has high content of soluble dietary fiber, which could have a prebiotic effect in the gut stimulating the growth of protective microbiota populations and increasing production of short-chain fatty acids (SСFA), which play a crucial role in maintaining gut homeostasis and health in general. Amaranth, quinoa and buckwheat grain, as well as some grain fractions such as proteins and polysaccharides, may have positive effects on the gut microbiota, and the biologically active substances metabolized by them have a positive effect on the body’s metabolism. The results of in vitro (by cultivation using model media) and in vivo experiments indicate that the introduction of various grain fractions of pseudocereals into the diet contributes to an increase in the content of SCFA, in alpha microbiota diversity indices, and also prevents the development of dysbiotic disorders caused by a high-fat diet.

Conclusion. Pseudocereals’ grain is promising raw material for the development of products that can have a positive effect on the intestinal microbiota.

Keywords:amaranth; quinoa; buckwheat; pseudocereals; microbiota and its methabolites

Funding. This research was supported by the Russian Science Foundation (project No. 21-76-10049 “Physiological and biochemical study of the effectiveness of new specialized products based on the complex processing of amaranth seeds”).

Conflict of interest. Authors declare no conflict of interest.

Contribution. The authors contributed equally to the preparation of the manuscript.

Thanks. The authors express their gratitude to the Head of the Laboratory of Biosafety and Nutrimicrobiome Analysis of the Federal Research Center for Nutrition and Biotechnology, Doctor of Medical Sciences Sheveleva S.A. for valuable advice and assistance in writing this article.

For citation: Markova Yu.M., Sidorova Yu.S. Amaranth, quinoa and buckwheat grain products: role in human nutrition and maintenance of the intestinal microbiome. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (6): 17–29. DOI: https://doi.org/10.33029/0042-8833-2022-91-6-17-29 (in Russian)

References

1. Alvarez-Jubete L., Arendt E.K., Gallagher E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol. 2010; 21 (2): 106–13. DOI: https://doi.org/10.1016/j.tifs.2009.10.014

2. Martínez-Villaluenga C., Peñas E., Hernández-Ledesma B. Pseudocereal grains: nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol. 2020; 137: 111178. DOI: https://doi.org/10.1016/j.fct.2020.111178

3. Sidorova Yu.S., Petrov N.A., Shipelin V.A., Mazo V.K. Spinach and quinoa - prospective food sources of biologically active substances. Voprosy pitaniia [Problems of Nutrition]. 2020; 89 (2): 100–6. DOI: https://doi.org/10.24411/0042-8833-2020-10020 (in Russian)

4. Ciudad-Mulero M., Fernández-Ruiz V., Matallana-González M.C., Morales P. Dietary fiber sources and human benefits: the case study of cereal and pseudocereals. Adv Food Nutr Res. 2019; 90: 83–134. DOI: https://doi.org/10.1016/bs.afnr.2019.02.002

5. Taylor R.N., Awika J.M. (eds). Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century. Woodhead Publishing, 2017: 1–342. ISBN 978-0-08-100866-9.

6. Kongdang P., Dukaew N., Pruksakorn D., Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: a comprehensive review of the literature. J Ethnopharmacol. 2021; 281: 114547. DOI: https://doi.org/10.1016/j.jep.2021.114547

7. Pseudocereals: Chemistry and Technology. In: C.M. Haros, R. Schoenlechner (eds). John Wiley & Sons, 2017: 238 p. DOI: https://doi.org/10.1002/9781118938256

8. Sidorova Yu.S., Biryulina N.A., Zilova I.S., Mazo V.K. Amaranth grain proteins: prospects for use in specialized food products. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (3): 96–106. DOI: https://doi.org/10.33029/0042-8833-2022-91-3-96-106 (in Russian)

9. Maughan P.J., Bonifacio A., Coleman C.E., Jellen E.N., Stevens M.R., Fairbanks D.J. Quinoa (Chenopodium quinoa). In: Kole C. (ed.). Genome Mapping and Molecular Breeding in Plants. Vol. 3: Pulses, Sugar and Tuber Crops. Berlin; Heidelberg: Springer, 2007: 147–58. DOI: https://doi.org/10.1007/978-3-540-34516-9_9

36. Aguilar E.G., Peiretti E.G., Uñates M.A., Marchevsky E.J., Escudero N.L., Camiña J.M. Amaranth seed varieties. A chemometric approach.J Food Meas Charact. 2013; 7 (4): 199–206. DOI: https://doi.org/10.1007/s11694-013-9156-1

37. Villacrés E., Quelal M., Galarza S., Iza D., Silva E. Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants. 2022; 11 (2): 213. DOI: https://doi.org/10.3390/plants11020213

38. Zhang S., Hu J., Sun Y., Ji H., Liu F., Peng X., et al. In vitro digestion of eight types of wholegrains and their dietary recommendations for different populations. Food Chem. 2022; 370: 131069. doi: https://doi.org/10.1016/j.foodchem.2021.131069

39. Wefers D., Bunzel M. Characterization of dietary fiber polysaccharides from dehulled common buckwheat (Fagopyrum esculentum) seeds. Cereal Chem. 2015; 92 (6): 598–603. DOI: https://doi.org/10.1094/CCHEM-03-15-0056-R

40. Rainakari A., Rita H., Putkonen T., Pastell H. New dietary fibre content results for cereals in the Nordic countries using AOAC 2011.25 method. J Food Compos Anal. 2016; 51: 1–8. DOI: https://doi.org/10.1016/j.jfca.2016.06.001

41. Da Silva L.P., Ciocca M.L.S. Total, insoluble and soluble dietary fiber values measured by enzymatic-gravimetric method in cereal grains. J Food Compos Anal. 2005; 18 (1): 113–20. DOI: https://doi.org/10.1016/j.jfca.2003.12.005

42. Ragaee S.M., Campbell G.L., Scoles G.J., McLeod J.G., Tyler R.T. Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 1. Composition, molecular weight distribution of water extracts, and biochemical characteristics of purified water-extractable arabinoxylan. J Agric Food Chem. 2001; 5: 2437–45. DOI: https://doi.org/10.1021/jf001227g

43. Overby H.B., Ferguson J.F. Gut microbiota-derived short-chain fatty acids facilitate microbiota: host cross talk and modulate obesity and hypertension. Curr Hypertens Rep. 2021; 23 (2): 1–10. https://doi.org/10.1007/s11906-020-01125-2

44. Sanna S., van Zuydam N.R., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U., et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019; 51 (4): 600–5. DOI: https://doi.org/10.1038/s41588-019-0350-x

45. Gabriel F.C., Fantuzzi G. The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutr Res. 2019; 72: 18–35. DOI: https://doi.org/10.1016/j.nutres.2019.08.006

46. Kim K.N., Yao Y., Ju S.Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients. 2019; 11 (10): 2512. DOI: https://doi.org/10.3390/nu11102512

47. Rahat-Rozenbloom S., Fernandes J., Gloor G.B., Wolever T.M.S. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes. 2014; 38 (12): 1525–31. DOI: https://doi.org/10.1038/ijo.2014.46

48. den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54 (9): 2325–40. DOI: https://doi.org/10.1194/jlr.R036012

49. Gullón B., Gullón P., Tavaria F.K., Yáñez R. Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food Funct. 2016; 7 (9): 3782–8. DOI: https://doi.org/10.1039/c6fo00924g

50. Bourriaud C., Robins R.J., Martin L., Kozlowski F., Tenailleau E., Cherbut C., et al. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol. 2005; 99 (1): 201–12. DOI: https://doi.org/10.1111/j.1365-2672.2005.02605.x

51. Scanlan P.D., Shanahan F., Marchesi J.R. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 2008; 8: 79. DOI: https://doi.org/10.1186/1471-2180-8-79

52. Van Den Abbeele P., Taminiau B., Pinheiro I., Duysburgh C., Jacobs H., Pijls L., et al. Arabinoxylo-oligosaccharides and inulin impact inter-individual variation on microbial metabolism and composition, which immunomodulates human cells. J Agric Food Chem. 2018; 66 (5): 1121–30. DOI: https://doi.org/10.1021/acs.jafc.7b04611

53. Li W., Wang K., Sun Y., Ye H., Hu B., Zeng X. Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. J Funct Foods. 2015; 13: 158–68. DOI: https://doi.org/10.1016/j.jff.2014.12.044

54. Yang J., Martínez I., Walter J., Keshavarzian A., Rose D.J. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe. 2013; 23: 74–81. DOI: https://doi.org/10.1016/j.anaerobe.2013.06.012

55. Ferreira-Lazarte A., Kachrimanidou V., Villamiel M., Rastall R.A., Moreno F.J. In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydr Polym. 2018; 199: 482–91. DOI: https://doi.org/10.1016/j.carbpol.2018.07.041

56. Cazarin C.B.B., Chang Y.K., Depieri M., Carneiro E.M., de Souza A.S., Amaya-Farfan J. Amaranth grain brings health benefits to young normolipidemic rats. Food Public Health. 2012; 2 (5): 178–83. DOI: https://doi.org/10.5923/j.fph.20120205.09

57. Akagawa S., Akagawa Y., Nakai Y., Yamagishi M., Yamanouchi S., Kimata T., et al. Fiber-rich barley increases butyric acid-producing bacteria in the human gut microbiota. Metabolites. 2021; 8 (8): 559. DOI: https://doi.org/10.3390/metabo11080559

58. Liu H., Wang J., He T., Becker S., Zhang G., Li D., Ma X. Butyrate: a double-edged sword for health. Adv Nutr. 2018; 9 (1): 21–9. DOI: https://doi.org/10.1093/advances/nmx009

59. Olguín-Calderón D., González-Escobar J.L., Ríos-Villa R., Dibildox-Alvarado E., De León-Rodríguez A., Barba De La Rosa A.P. Modulation of caecal microbiome in obese mice associated with administration of amaranth or soybean protein isolates. Pol J Food Nutr Sci. 2019; 69 (1): 35–44. DOI: https://doi.org/10.31883/pjfns-2019-0002

60. Chen T., Long W., Zhang C., Liu S., Zhao L., Hamaker B.R. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017; 7 (1): 2594. DOI: https://doi.org/10.1038/s41598-017-02995-410.1038/s41598-017-02995-4

61. Yang Y., Fukui R., Jia H., Kato H. Amaranth supplementation improves hepatic lipid dysmetabolism and modulates gut microbiota in mice fed a high-fat diet. Foods. 2021; 10 (6): 1259. DOI: https://doi.org/10.3390/foods10061259

62. Wu T., Gao Y., Hao J., Yin J., Li W., Geng J., et al. Lycopene, amaranth, and sorghum red pigments counteract obesity and modulate the gut microbiota in high-fat diet fed C57BL/6 mice. J Funct Foods. 2019; 60: 103437. DOI: https://doi.org/10.1016/j.jff.2019.103437

63. Zeyneb H., Pei H., Cao X., Wang Y., Win Y., Gong L. In vitro study of the effect of quinoa and quinoa polysaccharides on human gut microbiota. Food Sci Nutr. 2021; 9 (10): 5735–45. DOI: https://doi.org/10.1002/fsn3.2540

64. Cao Y., Zou L., Li W., Song Y., Zhao G., Hu Y. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Int J Biol Macromol. 2020; 163: 55–65. DOI: https://doi.org10.1016/j.ijbiomac.2020.06.241

65. Rowan F., Docherty N.G., Murphy M., Murphy B., Calvin Coffey J., O’Connell P.R. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010; 53 (11): 1530–6. DOI: https://doi.org10.1007/DCR.0b013e3181f1e620

66. Lennon G., Balfe Á., Bambury N., Lavelle A., Maguire A., Docherty N.G., et al. Correlations between colonic crypt mucin chemotype, inflammatory grade and Desulfovibrio species in ulcerative colitis. Colorectal Dis. 2014; 16 (5): O161–9. DOI: https://doi.org/10.1111/codi.12503.

67. Garcia-Mazcorro J.F., Mills D., Noratto G. Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiol Ecol. 2016; 92 (7): fiw089. DOI: https://doi.org/10.1093/femsec/fiw089.

68. Festi D., Schiumerini R., Eusebi L.H., Marasco G., Taddia M., Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014; 20 (43): 16 079–94. DOI: https://doi.org/10.3748/wjg.v20.i43.16079

69. Xu Y., Wang N., Tan H., Li S., Zhang C., Feng Y. Function of akkermansia muciniphila in obesity: Interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020; 11: 219. DOI: https://doi.org/10.3389/fmicb.2020.00219

70. Liu H., Wang J., He T., Becker S., Zhang G., Li D., et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018; 9 (1): 21–9. DOI: https://doi.org/10.1093/advances/nmx009

71. Kaur A., Kehinde B.A., Sharma P., Sharma D., Kaur S. Recently isolated food-derived antihypertensive hydrolysates and peptides: a review. Food Chem. 2021; 346: 128719. DOI: https://doi.org/10.1016/j.foodchem.2020.128719

72. Sidorova Yu.S., Mazo V.K., Sharafetdinov Kh.Kh., Kochetkova A.A. Metabolic effects of egg white enzymatic hydrolyzates: prospects of use in persons with metabolic syndrome (short review). Voprosy pitaniia [Problems of Nutrition]. 2018; 87 (5): 63–9. DOI: https://doi.org/10.24411/0042-8833-2018-10054 (in Russian)

73. Guo H., Hao Y., Fan X., Richel A., Everaert N., Yang X., et al. Administration with quinoa protein reduces the blood pressure in spontaneously hypertensive rats and modifies the fecal microbiota. Nutrients. 2021; 13 (7): 2446. DOI: https://doi.org/10.3390/nu13072446

74. Fotschki B., Juśkiewicz J., Jurgoński A., Amarowicz R., Opyd P., Bez J., et al. Protein-rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients. 2020; 12 (9): 2781. DOI: https://doi.org/10.3390/nu12092781

75. Zhou X.L., Yan B.B., Xiao Y., Zhou Y.M., Liu T.Y. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food Chem Toxicol. 2018; 119: 296–301. DOI: https://doi.org/10.1016/j.fct.2018.02.052

76. Liu J., Song Y., Zhao Q., Wang Y., Li C., Zou L., et al. Effects of tartary buckwheat protein on gut microbiome and plasma metabolite in rats with high-fat diet. Foods. 2021; 10 (10): 2457. DOI: https://doi.org/10.3390/foods10102457

77. Zhou Y., Wei Y., Yan B., Zhao S., Zhou X. Regulation of tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet. Food Sci Nutr. 2020; 8 (7): 3243–51. DOI: https://doi.org/10.1002/fsn3.1601

78. Zhou Y., Zhao S., Jiang Y., Wei Y., Zhou X. Regulatory function of buckwheatresistant starch supplementation on lipid profile and gut microbiota in mice fed with a highfat diet. J Food Sci. 2019; 84 (9): 2674–81. DOI: https://doi.org/10.1111/1750-3841.14747

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»