Arthrospira platensis phycocyanins: a perspective for use in foods for special dietary uses (brief review)

Abstract

Biomass of Arthrospira platensis has a long history of consumption as a source of protein, a number of micronutrients and minor biologically active compounds. Specific organoleptic properties of Arthrospira platensis biomass (pronounced bitter taste) limit its use as a source of phycocyanins. The developed modern methods of phycocyanin extraction from A. platensis biomass make it possible to obtain concentrates with improved sensory characteristics destined for the inclusion in foods for special dietary uses.

The aim of this brief review was to analyze the results of the studies on the assessment of the biological activity of phycocyanin extracted from the Arthrospira platensis biomass, substantiating the prospects of using their concentrates for inclusion in foods for various dietary purposes.

Material and methods. The PubMed Web Database, including MEDLINE article database, covering about 75% of the world’s medical publications, was used for the main search for the literature. In addition, Scopus and Web of Science databases were used. Search depth – 15 years. Search keywords: Arthrospira platensis, phycocyanins, safety, antioxidant activity, immunomodulatory properties.

Results and discussion. C-phycocyanin and allophycocyanin are complexes of proteins with the pigment phycocyanobilin, their total content is about 50% of the content of all proteins in the A. platensis biomass. A significant number of toxicological studies indicate that there are no risks to human health when using phycocyanin-containing extracts of A. platensis. Evidence of the antioxidant effect of phycocyanins extracted from A. platensis biomass, their anti-inflammatory activity, immunomodulatory properties, was obtained experimentally in vitro and in vivo, as well as in clinical studies.

Conclusion. Toxicological studies and experimental in vivo tests have shown the safe and effective use of Arthrospira platensis biomass extracts with a high content of phycocyanins as an additional means of dietary prevention and diet therapy. These data indicate the prospects for conducting additional studies on the possibility of including phycocyanin concentrates in specialized foods for various purposes.

Keywords:biomass and extracts of Arthrospira platensis; phycocyanins; antioxidant activity; anti-inflammatory activity; immunomodulatory properties; in vitro and in vivo studies

Funding. This work was supported by Russian Science Foundation (project N 22-16-00006).

Conflict of interest. Authors declare no conflict of interests.

Contribution. Concept and design of the study – Mazo V.K.; collecting and processing the material – Biryulina N.A., Bagryantseva O.V.; text writing, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Biryulina N.A., Mazo V.K., Bagryantseva O.V. Arthrospira platensis phycocyanins: a perspective for use in foods for special dietary uses (brief review). Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (6): 30–6. DOI: https://doi.org/10.33029/0042-8833-2022-91-6-30-36 (in Russian)

References

1. Komárek J., Kaštovský J., Mareš J., Johansen J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014; 86 (4): 295–335.

2. Ikeuchi M., Ishizuka T. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci. 2008; 7 (10): 1159. DOI: https://doi.org/10.1039/b802660m

3. Arashiro L.T., Ferrer I., Pániker C.C., Gómez-Pinchetti J.L., Rousseau D.P, Van Hulle S.W.H., et al. Natural pigments and biogas recovery from microalgae grown in wastewater // ACS Sustain Chem Eng. 2020; 8 (29): 10 691−701. DOI: https://doi.org/10.1021/acssuschemeng.0c01106

4. Liu Q., Huang Y., Zhang R., Cai T., Cai Y. Medical application of Spirulina platensis derived C-Phycocyanin. Evid Based Complement Alternat Med. 2016; 2016: 7803846. DOI: https://doi.org/10.1155/2016/7803846

5. Finamore A., Palmery M., Bensehaila S., Peluso I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxid Med Cell Longev. 2017; 69: 157–71. DOI: https://doi.org/10.1155/2017/3247528

6. Wu Q., Liu L., Miron A., Klimova B., Wan D., Kuca K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016; 90 (8): 1817–40. DOI: https://doi.org/10.1007/s00204-016-1744-5

7. Mazo V.K., Biryulina N.A., Sidorova Yu.S. Arthrospira platensis: antioxidant, hypoglycemic and hypolipidemic effects in vitro and in vivo (brief review). Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (4): 19–25. DOI: https://doi.org/10.33029/0042-8833-2022-91-4-19-25 (in Russian)

8. Romay Ch., González R., Ledón N., Remirez D., Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci. 2003; 4 (3): 207–16. DOI: https://doi.org/10.2174/1389203033487216

9. McCarty M.F., Iloki-Assanga S. Co-administration of phycocyanobilin and/or phase 2-inducer nutraceuticals for prevention of opiate tolerance. Curr Pharm Des. 2018; 24 (20): 2250–4. DOI: https://doi.org/10.2174/1381612824666180723162730

10. Cervantes-Llanos M., Lagumersindez-Denis N., Marín-Prida J., Pavón-Fuentes N., Falcon-Cama V., Piniella-Matamoros B., et al. Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sci. 2018; 194: 130–8. DOI: https://doi.org/10.1016/j.lfs.2017.12.032

11. Gdara N.B., Belgacem A., Khemiri I., Mannai S., Bitri L. Protective effects of phycocyanin on ischemia/reperfusion liver injuries. Biomed Pharmacother. 2018; 102: 196–202. DOI: https://doi.org/10.1016/j.biopha.2018.03.025

12. Strasky Z., Zemankova L., Nemeckova I., Rathouska J., Wong R.J., Muchova L., et al. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food Funct. 2013; 4 (11): 1586–94. DOI: https://doi.org/10.1039/c3fo60230c

13. Cherdkiatikul T., Suwanwong Y. Production of the α and β subunits of Spirulina Allophycocyanin and C-Phycocyanin in Escherichia coli: a comparative study of their antioxidant activities. J Biomol Screen. 2014; 19 (6): 959–65. DOI: https://doi.org/10.1177/1087057113520565

14. Leung P., Lee H.H., Kung Y.C., Tsai M.F., Chou T.C. Therapeutic effect of C-Phycocyanin extracted from blue green algae in a rat model of acute lung injury induced by lipopolysaccharide. Evid Based Complement Alternat Med. 2013; 2013: 1–11. DOI: https://doi.org/10.1155/2013/916590

15. Kim N.N., Shin H.S., Park H.G., Lee J., Kil G.S., Choi C.Y. Profiles of photosynthetic pigment accumulation and expression of photosynthesis-related genes in the marine cyanobacteria Synechococcus sp.: Effects of LED wavelengths. Biotechnol Bioprocess Eng. 2014; 19 (2): 250–6. DOI: https://doi.org/10.1007/s12257-013-0700-y

16. Zheng J., Inoguchi T., Sasaki S., Maeda Y., McCarty M.F., Fujii M., et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Integr Comp Physiol. 2013; 304 (2): 110–20. DOI: https://doi.org/10.1152/ajpregu.00648.2011

17. McCarty M.F., DiNicolantonio J.J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020; 63 (3): 383–5. DOI: https://doi.org/10.1016/j.pcad.2020.02.007

18. Chen Y.H., Chang G.K., Kuo S.M., Huang S.Y, Hu I.C., et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep. 2016; 6 (1): 24253. DOI: https://doi.org/10.1038/srep24253

19. Ratha S.K., Renuka N., Rawat I., Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021; 83: 111089. DOI: https://doi.org/10.1016/j.nut.2020.111089

20. Ferreira A.O., Polonini H.C., Dijkers E.C.F. Postulated adjuvant therapeutic strategies for COVID-19. J Pers Med. 2020; 10 (3): 80. DOI: https://doi.org/10.3390/jpm10030080

21. Raj T.K., Ranjithkumar R., Kanthesh B.M., Gopenath T.S. C-Phycocyanin of Spirulina plantesis inhibits NSP12 required for replication of SARS-COV-2: a novel finding in-silico. Int J Pharm Sci Res. 2020; 11 (9): 4271–8. DOI: https://doi.org/10.13040/IJPSR.0975-8232.11(9).4271-4278

22. Elaya Perumal U., Sundararaj R. Algae: a potential source to prevent and cure the novel coronavirus – a review. Int J Emerg Technol. 2020; 11 (2): 479–83.

23. Kerna N., Nwokorie U., Ortigas M., Chawla S., Pruitt K., Flores J., et al. Spirulina miscellany: medicinal benefits and adverse effects of Spirulina. EC Nutrition. 2022; 17: 25–36. DOI: https://doi.org/10.31080/ecnu.2022.17.01013

24. Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 2016; 109: 282–96. DOI: https://doi.org/10.1016/j.bej.2016.01.025

25. Petrukhina D.I. Assessment of the possibility of increasing biomass and synthesis products in the genera Spirulina and Arthrospira (Cyanophyta) after cryopreservation. Trudy Karel’skogo nauchnogo tsentra RAN [Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences]. 2019; (6): 74–84. DOI: https://doi.org/10.17076/eb905 (in Russian)

26. Evaluation of Certain Food Additives: Eighty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva: World Health Organization and Food and Agriculture Organization of the United Nations, 2019 (WHO technical report series; No. 1014). Licence: CC BY-NC-SA 3.0 IGO.

27. Grover P., Bhatnagar A., Kumari N., Bhatt A., Nishad D., Purkayastha J. C-Phycocyanin – a novel protein from Spirulina platensis – in vivo toxicity, antioxidant and immunomodulatory studies. Saudi J Biol Sci. 2021; 28 (3): 1853–9. DOI: https://doi.org/10.1016/j.sjbs.2020.12.037

28. Hutadilok-Towatana N., Reanmongko W., Satitit S., Panichayupakaranant P., Ritthisunthorn P. A subchronic toxicity study of Spirulina platensis. Food Sci Technol Res. 2008; 14 (4): 351–8. DOI: https://doi.org/10.3136/FSTR.14.351

29. Modeste V., Brient A., Thirion-Delalande C., Forster R., Aguenou C., Griffiths H., et al. Safety evaluation of Galdieria high-protein microalgal biomass. Toxicol Res Appl. 2019; 3: 13. DOI: https://doi.org/10.1177/2397847319879277

30. Bashir S., Sharif M.K., Javed M., Amjad A., Khan A., Shah F., et al. Safety assessment of Spirulina platensis through sprague dawley rats modeling. Food Sci Technol. 2020; 40 (2): 376–81. DOI: https://doi.org/10.1590/fst.41918

31. Masten Rutar J., Jagodic Hudobivnik M., Necemer M., Vogel

Mikus K., Arcon I., Ogrinc N. Nutritional quality and safety of the Spirulina dietary supplements sold on the Slovenian market.
Foods. 2022; 11: 849. DOI: https://doi.org/10.3390/foods11060849

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»