Микробиологическая стабилизация зернового сырья с применением наночастиц серебра

Резюме

В работе освещаются вопросы использования коллоидных растворов наночастиц серебра (НЧС) в качестве антимикробного средства при обработке зернового сырья. Цель исследования - на основе изучения воздействия наночастиц на бактериальные и грибные микроорганизмы, контаминирующие зерно, подобрать эффективные антимикробные концентрации растворов НЧС. Изучено влияние НЧС на количественный и качественный состав микробиоты зерна. Общее содержание частиц серебра в сусле, полученном из обработанного зерна ячменя, контролировали методом атомно-адсорбционной спектрометрии. Выявлены рабочие концентрации препарата НЧС, ста­билизированного хитозаном, обеспечивающие бактериостатические и фунгистатические эффекты. Описан метод снижения содержания НЧС в зерне, прошедшем антимикробную обработку, для дальнейшего его использования в бродильных производствах, хлебопечении. На основе данных, полученных при обеззараживании зерна пшеницы препаратом наночастиц, была построена математическая модель, отражающая степень влияния содержания НЧС на изменение количества микроорганизмов в 1 г зерновой массы. С целью повы­шения безопасности обработанного зерна удаление наночастиц из зерновой массы непосредственно перед его использованием рекомендовано проводить способом щелочной обработки, позволяющим предотвратить попадание коллоидного серебра в продукт переработки. Для этого образцы ячменя, содержащего 0,092 г/кг НЧС, выдерживали в 0,15% растворе NaOH в течение 1-5 ч, щелочь сливали и промывали зерно водой. Приготовленное в лабора­торных условиях 12% ячменное сусло фильтровали и измеряли содержание серебра. Показано, что щелочная обработка ячменя позволяет удалить зна­чительное количество коллоидного серебра из зерновой массы и предотвра­тить его попадание в сусло. При максимальной длительности обработки содержание серебра в сырье снизилось более чем в 400 раз. Таким образом, общее содержание серебра в 100 г зерна составит менее 0,025х10-3 г, что ниже допустимого максимального суточного уровня потребления серебра (0,070x10-3 г).

Ключевые слова:наночастицы серебра, зерно, контаминация, антимикробная обработка, хитозан

Вопр. питания. 2017. Т. 86. № 3. С. 108-114. doi: 10.24411/0042-8833-2017-00052.

Микробная контаминация зернового сырья и повыше­ние риска инфицирования производства являются серьезными проблемами в хлебопечении, при получе­нии продуктов брожения, в том числе при дрожжегенерации. Все большее применение в качестве антимик­робного агента находят наночастицы серебра (НЧС). Однако внедрение наносистем в пищевые производства характеризуется рядом проблем, связанных, в частности, с безопасностью наночастиц [1, 2]. Решение этих проб­лем лежит в области всестороннего изучения процессов, протекающих при взаимодействии искусственных наносистем с микроорганизмами пищевых производств.

Для обеспечения микробиологической стабилизации зернового сырья требуется определить закономерности и установить режимы использования агентов, содержа­щих нанокомпоненты. В хлебопечении актуально уста­новление рабочих концентраций коллоидных растворов НЧС, подавляющих развитие картофельной болезни в хлебобулочных изделиях из пшеничной муки, в пи­воваренном производстве - антимикробная обработка ячменного и пшеничного зерна.

Согласно данным литературы, определяющим пока­зателем антимикробного действия коллоидных раство­ров наносеребра служит концентрация частиц в среде [3-5]. Синтезированный китайскими учеными препарат НЧС, стабилизированный оксидом железа, показал хорошее антибактериальное действие на Escherichia coli, Staphylococcus epidermidis и Bacillus subtilis [6], причем эффект был более выражен в отношении грамотрицательных бактерий. В ряде других исследований также указано, что НЧС эффективнее ингибируют развитие грамотрицательных бактерий [7]. Предполагается, что это связано с утолщенным пептидгликановым слоем, составляющим клеточную стенку грамположительных микроорганизмов. Однако, согласно последним данным, коллоидные растворы НЧС могут одинаково хорошо уг­нетать рост как грамотрицательных, так и грамположительных бактерий, в том числе спорообразующих [8-10]. Кроме того, считается, что, в отличие от обработки антибиотиками, бактерии не способны вырабатывать резистентность к НЧС даже после продолжительной об­работки, что в совокупности с эффективным уничтоже­нием споровых бактерий делает коллоидные растворы НЧС крайне перспективным средством.

Необходимо отдельно отметить комплексное воздейст­вие НЧС и выделяемых ими ионов серебра на клетки бактерий. В работе [11] изучено ингибирующее действие ионов серебра на дыхательные процессы бактериаль­ных клеток. Авторами сделано предположение, что серебро повышает проницаемость клеточных мембран для протонов, вследствие чего теряется протонный градиент. Компенсация потерь протонного градиентаобеспечивается ускорением дыхательного процесса. Эта неконтролируемая реакция генерирует супероксид и гидроксильные радикалы, токсичные для бактери­альных клеток. В работе [12] отмечается, что при­сутствие частиц серебра в среде вызывает наруше­ние транспорта ионов фосфата, пролина и глутамина в бактериальных клетках, что приводит к нарушению обмена веществ клетки и в длительной перспективе к ее гибели. На основе экспериментов in vitro и in vivo НЧС при попадании внутрь клеток бактерий могут приводить к нарушению структуры ДНК и возникнове­нию мутаций [13]. Другие исследователи высказывают предположение, что НЧС могут разрушать бактериаль­ные клетки и без выхода ионов [14]. Так, показано, что бактерицидная активность НЧС значительно более вы­ражена в присутствии кислорода. Данный факт может объясняться образованием активных форм кислорода, индуцированным наносеребром. Это подтверждается исследованием, в котором было обнаружено, что НЧС способствуют образованию свободных радикалов, нега­тивно влияющих на жизнедеятельность бактериальных клеток [15].

Достаточно подробно исследовано влияние НЧС на клеточную стенку бактериальных микроорганизмов. Известно, что наночастицы адсорбируются на поверх­ности клеточной стенки бактерий и проникают через клеточную мембрану внутрь клетки, нарушая ее це­лостность и затрудняя выполнение барьерных и транс­портных функций [16]. Высказываются гипотезы о том, что НЧС притягиваются к отрицательно заряженной поверхности бактериальных клеток вследствие элек­тростатического взаимодействия [17]. Другие ученые считают, что аккумулирование НЧС на поверхности бак­терий вызвано реакцией между серебром и тиоловыми группами, входящими в состав клеточной стенки [18]. Разрушение клеточной мембраны также может проис­ходить вследствие того, что НЧС повреждают молекулы липополисахаридов, составляющих основу мембранной оболочки [19].

Цель настоящего исследования - на основе изуче­ния воздействия НЧС на бактериальные и грибные микроорганизмы, контаминирующие зерно и продукты его переработки, подобрать эффективные антимикроб­ные концентрации растворов НЧС, целесообразных для обеззараживания зернового сырья, с возможностью его дальнейшего использования при производстве пищевых продуктов, в том числе в бродильных производствах.

Материал и методы

Для исследования использовали коллоидный раствор НЧС ("Сентоза Факторинг НП", РФ). Препарат синте­зирован путем химического восстановления водорас­творимой соли серебра в водной среде аскорбатом или цитратом натрия, с дальнейшим добавлением хитозана в качестве стабилизатора. Для определения размера частиц использовали спектрофотометр СФ-56 (РФ).

Максимум полосы поглощения плазменного резонанса составил 405 нм, что соответствует размеру частиц 10-15 нм [29]. Ионов серебра в исходном препарате не было обнаружено. При взаимодействии с 0,9% рас­твором хлорида натрия или 0,1% раствором сульфида натрия не происходило помутнение раствора или обра­зование осадка.

В качестве зернового сырья использовали ячмень сорта "Скарлетт" (ГОСТ 5060-86) и пшеницу сорта "Дарья" (ГОСТ Р 52554-2006), показатели качества которых соответствовали требованиям нормативных документов.

Для проведения антимикробной обработки зерна в 1500 г зерновой массы путем распыления вносили коллоидный раствор НЧС до содержания 0,06-0,12% по массе. Зерно тщательно перемешивали, чтобы его влажность после обработки не превышала 16%. Конт­роль также доводили до влажности 16%. При анализе динамики изменения микробиологических показателей зерновой массы пшеницу и ячмень, прошедшие и не прошедшие антимикробную обработку, распределяли по 5 колбам в количестве 300 г. Затем образцы по­мещали в термостат и выдерживали в течение 6 нед при 30 °С (далее - "ускоренное хранение"). Микробио­логические показатели зерна определяли согласно ГОСТ 10444.12-2013, ГОСТ 10444.15-94 и ГОСТ Р 52816-2007.

Общее содержание серебра в жидкой среде опреде­ляли с применением атомно-адсорбционного спектро­метра КВАНТ-Z.ЭTA (ВНИИОФИ, РФ) на основе метода измерения излучения, испускаемого первичным источ­ником и поглощенного атомами в основном состоянии, причем интенсивность поглощения зависит от концент­рации элемента.

Измерение микробиологических показателей осу­ществляли в 5 повторностях. Абсолютные погрешности вычисляли с уровнем надежности p=0,95. Проводили парный t-тест на отсутствие ингибирующего эффекта от антимикробной обработки. Величины Тнабл и соот­ветствующие им значения вероятностей отклонения (при P<a=0,05) 0-гипотезы приведены в табл. 1. Наблю­даемый эффект полагали незначительным при приня­тии 0-гипотезы либо при малой его относительной вели­чине: енабл = |d|/yK<0,05 (в табл. 1 обозначено *).

Результаты и обсуждение

Одним из определяемых показателей микробио­логической безопасности зерна является наличие в единице массы зерна плесеней, более устойчивых к воздействию НЧС. Поэтому необходимую концент­рацию препарата подбирали с учетом ингибирующего эффекта в отношении именно плесеней. На основе данных, полученных при обработке зерна пшеницы пре­паратом наночастиц, была построена математическая модель, отражающая степень влияния содержания НЧС (X, г на 1 кг зерна) на изменение количества микроорга­низмов в 1 г зерновой массы (Y, КОЕ/г).

Получено уравнение регрессии: Y=-70,99lnX-119,4, из которого следует, что для достижения содержания в зерне плесеней Y=50 КОЕ/г (максимально допустимого значения согласно установленным требованиям) необ­ходимо вносить препарат НЧС в количестве Х=0,092 г на 1 кг зерна.

Выполнен микробиологический анализ зерновой массы пшеницы и ячменя, обработанной препаратом НЧС. Результаты приведены в табл. 1.

Анализ данных эксперимента позволяет сделать вывод о статистически значимом эффекте антимикробной об­работки зерна: показатели микробной контаминации на поверхности зерна существенно различаются между контрольными и обработанными НЧС образцами.

Важно отметить, что с целью повышения безопас­ности зерна удаление НЧС из зерновой массы непос­редственно перед его использованием можно проводить способом щелочной обработки, который позволяет пре­дотвратить попадание коллоидного серебра в продукт переработки. С этой целью образцы ячменя, содер­жащего НЧС в дозе 0,092 г/кг, выдерживали в 0,15% растворе NaOH в течение 1-5 ч. Затем щелочь сливали и промывали зерно водой. Далее готовили 12% ячмен­ное сусло и после фильтрования измеряли содержание серебра методом атомно-адсорбционной спектромет­рии в испытуемых пробах (табл. 2).

Как видно из табл. 2, щелочная обработка яч­меня позволяет удалить значительное количество коллоидного серебра с поверхности зерна и пре­дотвратить его попадание в сусло. При максималь­ной длительности обработки содержание серебра в сырье снизилось более чем в 400 раз. Таким образом, общее содержание серебра в 100 г зерна составит менее 0,025x10-3 г, что ниже допустимого максимального суточного уровня потребления се­ребра (70 мкг). Эффективность такого приема объ­ясняется тем, что хитозан - стабилизатор, входящий в состав препарата НЧС, - отличается пониженной устойчивостью к щелочной среде и при повыше­нии pH теряет свои стабилизирующие свойства. При этом интенсифицируется коагуляция серебра и упрощается его удаление с поверхности зерновой массы. Необходимо отметить, что содержание серебра в сусле, приготовленном из образцов ячменя, выдержанных в растворе щелочи в течение 3-5 ч, не превышает 5,00x10-5 г/дм3 - максимально допусти­мого содержания коллоидного серебра в питьевой воде, регламентируемого СанПиН 2.1.4.1074-01.

Основываясь на вышеизложенном, можно предло­жить следующую методику обработки зернового сырья. Для ячменя и пшеницы:

1) из концентрированного коллоидного раствора НЧС, стабилизированных хитозаном, путем добавления дис­тиллированной воды готовят разбавленный рабочий раствор таким образом, чтобы концентрация НЧС в пре­парате составила 9,2 г/дм3;

2) в зерновую массу при постоянном перемешива­нии методом распыления вносят рабочий раствор НЧС из расчета 10 см3 на 1 кг зерна;

3) зерновую массу затем транспортируют в элеватор и хранят при температуре 10-30 °С;

4) для удаления препарата и снижения вероятности попадания НЧС в пиво зерновую массу, предназна­ченную для солодоращения или в качестве несоложе­ного сырья при получении пивного сусла, выдерживают в 0,15% растворе NaOH в течение 3-5 ч. Затем раствор щелочи сливают и промывают зерно водой.

В случае антимикробной обработки пшеницы и ржи способ осуществляется аналогично вышеописанному на стадиях 1-3, а 4-я стадия заключается в необходимости непосредственно перед механико-ферментативной об­работкой промыть зерно водой. Особенности практи­ческого применения данной методики обработки будут описаны в дальнейших публикациях.

В рамках обсуждения полученных результатов важно подчеркнуть, что механизм антибактериального дейст­вия НЧС в полной мере не изучен. Известно ингибирующее действие НЧС на грибные микроорганизмы [20]. Об­наружено, что НЧС эффективно угнетает представителей фитопатогенных плесеней [21]. Изучение действия НЧС на грибы рода Phoma, Fusarium и Trichoderma показало, что серебро в малых концентрациях незначительно ингибирует рост мицелия [22]. При обработке дрожжей рода Candida коллоидными растворами НЧС выявлено, что в определенных концентрациях серебро негативно вли­яет на способность клеток к размножению [23]. В то же время было установлено, что действие НЧС на грибные организмы значительно менее выражено по сравнению с антибактериальным. Низкие концентрации НЧС, про­являющие отчетливое антибактериальное действие, не демонстрировали ингибирующего эффекта на аскомицетовые грибы [24, 25]. Повышенную устойчивость гриб­ных микроорганизмов к воздействию наночастиц можно объяснить рядом факторов. Во-первых, мицелиальные грибы и дрожжи являются эукариотическими микроорга­низмами, имеющими сформированный ядерный аппарат [26]. Поэтому, в отличие от прокариотических клеток, ДНК прокариотов более надежно защищена и менее подвер­жена мутационному действию НЧС [27]. Во-вторых, кле­точные стенки грибных микроорганизмов сформированы хитином или целлюлозой, что делает их менее проница­емыми для антимикробных агентов. Кроме того, полисахаридный состав клеточных мембран грибов отличается отсутствием липополисахаридов, которые усиливают взаимодействие НЧС с поверхностью клеток [28].

Хотя специфика действия НЧС на эукариотические микроорганизмы гораздо менее изучена по сравнению с действием на прокариоты, анализ данных литературы показывает, что бактерии более подвержены антимик­робному воздействию наносеребра, чем грибы. В соот­ветствии с этим в случае использования НЧС в качестве антимикробного агента необходимо тщательно контро­лировать фунгистатическое действие препарата.

Заключение

В рамках выполненного научного исследования выяв­лены рабочие концентрации препаратов НЧС, стабили­зированных хитозаном, обеспечивающие антимикроб­ные эффекты. Описан метод снижения содержания НЧС в зерне, прошедшем антимикробную обработку.

Необходимо подчеркнуть, что обеспечение безо­пасности процессов производства пищевых продук­тов - одно из перспективных направлений научных исследований в соответствии с прогнозом научно-технологического развития России до 2030 г., предус­матривающим в долгосрочном периоде расширение применения наноразмерных материалов в различных отраслях и комплексах, в том числе в пищевой про­мышленности.

Изучение влияния различных физико-химических факторов на сырье и пищевые продукты позволит усовершенствовать их потребительские характерис­тики, увеличить сроки годности и микробиологичес­кую устойчивость. Однако следует особо отметить важность проведения дополнительных исследова­ний с целью обоснования безопасности применения НЧС и соответствия положениям технического рег­ламента ТР ТС 029/2012 "Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств". В частности, необходимо определять остаточные количества серебра в раз­личных видах продукции для недопущения приоб­ретения пищевыми продуктами новых потенциально опасных свойств. Основные направления дальней­шего использования полученных результатов связаны с проведением комплексной оценки влияния НЧС на потребительские свойства продуктов при хранении, определением условий использования нанотехнологической продукции.

Работа выполнена при финансовой поддержке гранта Президента РФ № МК-8362.2016.11.

Литература

1. Хотимченко С.А., Гмошинский И.В., Тутельян В.А. Проблема обеспечения безопасности наноразмерных объектов для здо­ровья человека // Гиг. и сан. 2009. № 5. С. 7-11.

2. Зайцева Н.В. и др. Токсикологическая оценка наноразмерного коллоидного серебра в экспериментах на мышах. Поведенчес­кие реакции, морфология внутренних органов // Анализ риска здоровью. 2015. № 2 С. 68-81.

3. Mikhienkova A., Mukha Yu. Characteristic and stability of antimi­crobial effect of silver nanoparticles in colloid solutions // Environ. Health. 2011. Vol. 1. P. 55-57.

4. Petica A., Gavriliu S., Lungu M. et al. Colloidal silver solutions with antimicrobial properties // Mater. Sci. Eng B. 2008. Vol. 152, N 1. P. 22-27.

5. Zhang H., Oyanedel-Craver V. Evaluation of the disinfectant perfor­mance of silver nanoparticles in different water chemistry conditions // J. Environ. Eng. 2011. Vol. 138, N 1. P. 58-66.

6. Gong P., Li H., He X. et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles // Nanotechnology. 2007. Vol. 18, N 28. P. 285-304.

7. Jung W.K., Koo H.C., Kim K.W. et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli // Appl. Environ. Microbiol. 2008. Vol. 74, N 7. P. 2171-2178.

8. Birla S.S., Tiwari V.V., Gade A.K. et al. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus // Lett. Appl. Microbiol. 2009. Vol. 48, N 2. P. 173-179.

9. Guzman M., Dille J., Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria // Nanomed. Nanotechnol. Biol. Med. 2012. Vol. 8, N 1. P. 37-45.

10. Litvin V.A., Minaev B.F. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicro­bial activity // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013. Vol. 108. P. 115-122.

11. Holt K.B., Bard A.J. Interaction of silver (I) ions with the respira­tory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+ // Biochemistry. 2005. Vol. 44, N 39. P. 13 214-13 223.

12. Schreurs W.J., Rosenberg H. Effect of silver ions on transport and retention of phosphate by Escherichia coli // J. Bacteriol. 1982. Vol. 152, N 1. P. 7-13.

13. Yang W., Shen C., Ji Q. et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA // Nanotechnology. 2009. Vol. 20, N 8. P. 85-102.

14. Yoon K.Y., Byeon J.H., Park J.H. et al. Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols // Environ. Eng. Sci. 2008. Vol. 25, N 2. P. 289-294.

15. Kim J.S., Kuk E., Yu K.N. et al. Antimicrobial effects of silver nanoparticles // Nanomed. Nanotechnol. Biol. Med. 2007. Vol. 3, N 1. P. 95-101.

16. Morones J.R., Elechiguerra J.L., Camacho A. et al. The bactericidal effect of silver nanoparticles // Nanotechnology. 2005. Vol. 16, N 10. P. 2346-2356.

17. Raffi M., Hussain F., Bhatti T.M. et al. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224 // J. Mater. Sci. Technol. 2008. Vol. 24, N 2. P. 192-196.

18. Hwang E.T., Chae Y.J., Lee J.H. et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria // Small. 2008. Vol. 4, N 6. P. 746-750.

19. Sondi I., Salopek-Sondi B. et al. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria // J. Colloid Interface Sci. 2004. Vol. 275, N 1. P. 177-182.

20. Esteban-Tejeda L., Malpartida F., Esteban-Tejeda A. et al. The anti­bacterial and antifungal activity of a soda-lime glass containing silver nanoparticles // Nanotechnology. 2009. Vol. 20, N 8. P. 85-103.

21. Jo Y.K., Kim B.H., Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi // Plant Dis. 2009. Vol. 93, N 10. P. 1037-1043.

22. Panacek A., Kolar M., Vecerova R. et al. Antifungal activity of silver nanoparticles against Candida spp // Biomaterials. 2009. Vol. 30, N 31. P. 6333-6340.

23. Gajbhiye M., Kesharwani J., Ingle A. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole // Nanomed. Nanotechnol. Biol. Med. 2009. Vol. 5, N 4. P. 382-386.

24. Kathiresan K., Alikunhi N.M., Pathmanaban S. Analysis of antimi­crobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger // Can. J. Microbiol. 2010. Vol. 56, N 12. P. 1050-1059.

25. MubarakAli D., Thajuddin N., Jeganathan K. et al. Plant extract medi­ated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens // Colloids Surfaces B Biointerfaces. 2011. Vol. 85, N 2. P. 360-365.

26. Jaidev L.R., Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity // Colloids Surfaces B Biointerfaces. 2010. Vol. 81, N 2. P. 430-433.

27. Panacek A., Prucek R., Safarova D. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster // Environ. Sci. Technol. 2011. Vol. 45, N 11. P. 4974-4979.

28. Джей Д.М., Лесснер М.Д., Гольден Д.А. Современная пище­вая микробиология М. : БИНОМ. Лаборатория знаний, 2011. 887 с.

29. Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. Synthesis and properties of silver nanoparticles: advances and prospects // Rus. Chem. Rev. 2008. Vol. 77, N 3. P. 233-257.

Материалы данного сайта распространяются на условиях лицензии Creative Commons Attribution 4.0 International License («Атрибуция - Всемирная»)

SCImago Journal & Country Rank
Scopus CiteScore
ГЛАВНЫЙ РЕДАКТОР
ГЛАВНЫЙ РЕДАКТОР
Тутельян Виктор Александрович
Академик РАН, доктор медицинских наук, профессор, научный руководитель ФГБУН «ФИЦ питания и биотехнологии»

Журналы «ГЭОТАР-Медиа»