Cow colostrum: component composition, biological properties and application practice
Abstract
Bovine colostrum (ВС) has a high biological value, which allows it to be used for the development of new functional products.
The aim of the study was to assess the possibility of using BC for the prevention and treatment of infectious and non-infectious diseases.
Material and methods. The search for scientific information on the study of the component composition, immunobiological properties and the use of BC in clinical practice was carried out using the databases of the RSCI, CyberLeninka, ScienceDirect, PubMed.
Results. The macro- and micronutrient composition of BC is presented, its changes over time from the moment of calving are described. A comparative analysis of the content of various components in milk and colostrum is presented. A detailed list of antimicrobial factors that increase nonspecific resistance and provide immunocorrective, antimicrobial and anti-inflammatory effects is submitted. The possibility of using BC in clinical practice as a part of complex therapy in the treatment of various infectious diseases, including severe acute respiratory syndrome caused by the new coronavirus infection SARS-CoV-2, as well as in cardiovascular diseases, allergies, autoimmune and oncological diseases, has been demonstrated.
Conclusion. According to the literature, BC has a high safety profile and is applicable to all age groups of the population. Given the wide range of biological activity of BC components, a promising area of scientific research is the development of the products for therapeutic and prophylactic purposes, including dietary supplements, based on its ingredients, which have the desired properties for correcting the immune status, preventing non-communicable and infectious diseases, as well as for prevention of occupational diseases among persons working in harmful working conditions.
Keywords:cow colostrum; functional products; dietary supplements; treatment; prevention; infectious diseases; non-communicable diseases
Funding. The study had no sponsorship.
Conflict of interest. The authors declare no conflicts of interest.
Contribution. The shared participation of authors at all stages of the work is equivalent.
For citation: Kuzmin S.V., Rusakov V.N., Sinitsyna O.O., Myzel S.G., Aleshkin V.A. Cow colostrum: component composition, biological properties and application practice. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (2): 97–108. DOI: https://doi.org/10.33029/0042-8833-2023-92-2-97-108 (in Russian)
References
1. Golovach T.N., Kozich O.G., Asafov V.A., Iskakova E.L., Myalenko D.M., Kharitonov D.V., et al. Native and fermented bovine colostrum as component of functional food products. Trudy BGU [Proceedings of the Belarusian State University]. 2014; 9 (2): 224–35. (in Russian)
2. Kelly G.S. Bovine colostrums: A review of clinical uses. Altern Med Rev. 2003; 8 (4): 378–94.
3. Leont’eva S.A., Tikhonov S.L., Tikhonova N.V., Lazarev V.A. Colostrum as a promising raw material for the food production. Industriya pitaniia [Food Industry]. 2021; 6 (2): 23–33. DOI: https://doi.org/10.29141/2500-1922-2021-6-2-3 (in Russian)
4. Godden S.M., Lombard J.E., Woolums A.R. Colostrum management for dairy calves. Vet Clin North Am Food Anim Pract. 2019; 35 (3): 535–56. DOI: https://doi.org/10.1016/j.cvfa.2019.07.005
5. Lozovskaya D., Dymar O. Evaluation of technological properties of colostrum as a raw material for food production. In: Topical Issues of Processing of Meat and Dairy Raw Materials: Collection of scientific papers. 2016; (10): 140–53. (in Russian)
6. Gorbatova K., Gunikova P. Chemistry and physics of milk. Saint Petersburg: GIORD, 2012: 336 p. (in Russian)
7. Samburov N., Palaus I. Cow colostrum, its composition and biological properties. Vestnik Kurskoy gosudarstvennoy sel’skokhozyaystvennoy akademii [Bulletin of the Kursk State Agricultural Academy]. 2014; (4): 59–61. (in Russian)
8. Tepel A. Chemistry and physics of milk. Saint Petersburg: Professiya, 2012: 832 p. (in Russian)
9. Kehoe S.I., Jayarao B.M., Heinrichs A.J. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci. 2007; 91 (5): 2164. DOI: https://doi.org/10.3168/jds.2007-0040
10. Playford R.J., Weiser M.J. Bovine colostrum: Its constituents and uses. Nutrients. 2021; 13 (1): 265. DOI: https://doi.org/10.3390/nu13010265
11. Underwood M.A., German J.B., Lebrilla C.B., Mills D.A. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr Res. 2015; 77 (1–2): 229–35. DOI: https://doi.org/10.1038/pr.2014.156
12. Fischer A.J., Song Y., He Z., Haines D.M., Guan L.L., Steele M.A. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J Dairy Sci. 2018; 101: 3099–109. DOI: https://doi.org/10.3168/jds.2017-13397
13. Zhang S., Chen F., Zhang Y., Lv Y., Heng J., Min T., et al. Recent progress of porcine milk components and mammary gland function. J Anim Sci Biotechnol. 2018; 9: 77. DOI: https://doi.org/10.1186/s40104-018-0291-8
14. Szyndler-Nędza M., Mucha A., Tyra M. The effect of colostrum lactose content on growth performance of piglets from Polish Large White and Polish Landrace sows. Livestock Sci. 2020; 234: 103997. DOI: https://doi.org/10.1016/j.livsci.2020.103997
15. O’Riordan N., O’Callaghan J., Buttò L.F., Kilcoyne M., Joshi L., Hickey R.M. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. J Dairy Sci. 2018; 101: 6730–41. DOI: https://doi.org/10.3168/jds.2018-14499
16. O’Callaghan T.F., O’Donovan M., Murphy J.P., Sugrue K., Mannion D., McCarthy W.P., et al. Evolution of the bovine milk fatty acid profile – from colostrum to milk five days post parturition. Int Dairy J. 2020; 104: 8721–31. DOI: https://doi.org/10.1016/j.idairyj.2020.104655
17. Sienkiewicz M., Szymanska P., Fichna J. Supplementation of bovine colostrum in inflammatory bowel disease: benefits and contraindications. Adv Nutr. 2021; 12 (2): 533–45. DOI: https://doi.org/10.1093/advances/nmaa120
18. Qureshi T.M., Yaseen M., Nadeem M., Murtaza M.A., Munir M. Physico-chemical composition and antioxidant potential of buffalo colostrum, transition milk, and mature milk. J. Food Process Preserv. 2020; 44 (10): e14763. DOI: https://doi.org/10.1111/jfpp.14763
19. Geiger A.J. Colostrum: Back to basics with immunoglobulins. J Anim Sci. 2020; 98 (S1): S126–32. DOI: https://doi.org/10.1093/jas/skaa142
20. Borzenkova N.V., Balabushevich N.G., Larionova N.I Lactoferrin: physico-chemical properties, biological functions, delivery systems, drugs and biologically active additives (review). Biofarmatsevticheskiy zhurnal [Biopharmaceutical Journal]. 2010; 2 (3): 3–19. (in Russian)
21. Haiwen Z., Rui H., Bingxi Z., Qingfeng G., Jifeng Z., Xuemei W., et al. Oral administration of bovine lactoferrin-derived lactoferricin (Lfcin) B could attenuate enterohemorrhagic Escherichia coli O157:H7 induced intestinal disease through improving intestinal barrier function and microbiota. J Agric Food Chem. 2019; 67 (14): 3932–45. DOI: https://doi.org/10.1021/acs.jafc.9b00861
22. Tokaev E.S., Krasnova I.S., Korobeynikova T.V. Composition and clinical use of cow colostrum. Voprosy pitaniia [Problems of Nutrition]. 2012; 81 (3): 35–40. (in Russian)
23. Alderova L., Baroskova A., Faldyna M. Lactoferrin: A review. Vet Med. 2008; 53 (9): 457–68. DOI: https://doi.org/10.17221/1978-VETMED
24. Shi P., Liu M., Fan F., Chen H., Yu C., Lu W., et al. Identification and mechanism of peptides with activity promoting osteoblast proliferation from bovine lactoferrin. Food Biosci. 2018; 22: 19–25. DOI: https://doi.org/10.1016/j.fbio.2017.12.011
25. Puppel K., Golebiewski M., Konopka K., Kunowska-Slosarz M., Slosarz J., Grodkowski G. Relationship between the quality of colostrum and the formation of microflora in the digestive tract of calves. Animals (Basel). 2020; 10 (8): 1293. DOI: https://doi.org/10.3390/ani10081293
26. Martin C.C., de Oliveira S.M.F.N., Costa J.F.D.R., Baccili C.C., Silva B.T., Hurley D.J., et al. Influence of feeding fresh colostrum from the dam or frozen colostrum from a pool on indicator gut microbes and the inflammatory response in neonatal calves. Res Vet Sci. 2021; 135: 355–65. DOI: https://doi.org/10.1016/j.rvsc.2020.10.017
27. Fasse S., Alarinta J., Frahm B., Wirtanen G. Bovine colostrum for human consumption – improving microbial quality and maintaining bioactive characteristics through processing. Dairy. 2021; 2 (4): 556–75. DOI: https://doi.org/10.3390/dairy2040044
28. Gauthier S.F., Pouliot Y., Maubois J.L. Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Lait. 2006; 86: 99–125. DOI: https://doi.org/10.1051/lait:2005048
29. Ceniti C., Costanzo N., Morittu V.M., Tilocca B., Roncada P., Britti D. Review: Colostrum as an emerging food: Nutraceutical properties and food supplement. Food Rev Int. 2022. DOI: https://doi.org/10.1080/87559129.2022.2034165
30. Yadav R., Angolkar T., Kaur G., Buttar H.S. Antibacterial and antiinflammatory properties of bovine colostrum. Recent Pat Inflamm Allergy Drug Discov. 2016; 10 (1): 49–53. DOI: https://doi.org/10.2174/1872214810666160219163118
31. Rathe M., Müller K., Sangild P.T., Husby S. Clinical applications of bovine colostrum therapy: A systematic review. Nutr Rev. 2014; 72 (4): 237–54. DOI: https://doi.org/10.1111/nure.12089
32. Xu M.L., Kim H.J., Wi G.R., Kim H.J. The effect of dietary bovine colostrum on respiratory syncytial virus infection and immune responses following the infection in the mouse. J Microbiol. 2015; 53 (9): 661–6. DOI: https://doi.org/10.1007/s12275-015-5353-4
33. Nederend M., van Stigt A., Jansen J., Jacobino S., Brugman S., de Haan C., et al. Bovine IgG prevents experimental infection with RSV and facilitates human T cell responses to RSV. Front Immunol. 2020; 11: 1701. DOI: https://doi.org/10.3389/fimmu.2020.01701
34. Inagaki M., Yamamoto M., Xijier, Cairangzhuoma, Uchida K., Yamaguchi H., et al. In vitro and in vivo evaluation of the efficacy of bovine colostrum against human rotavirus infection. Biosci Biotechnol Biochem. 2010; 74 (3): 680–2. DOI: https://doi.org/10.1271/bbb.90862
35. Civra A., Altomare A., Francese R., Donalisio M., Aldini G. Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. J Dairy Sci. 2019; 102 (6): 4857–69. DOI: https://doi.org/10.3168/jds.2018-16016
36. Barakat S.H., Meheissen M.A., Omar O.M., Elbana D.A. Bovine colostrum in the treatment of acute diarrhea in children: A double-blinded randomized controlled trial. J Trop Pediatr. 2020; 66: 46–55. DOI: https://doi.org/10.1093/tropej/fmz029
37. Saad K., Abo-Elela M.G.M., El-Baseer K.A.A., Ahmed A.E., Ahmad F.A., Tawfeek M.S.K., et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine (Baltimore). 2016; 95: 4–8. DOI: https://doi.org/10.1097/MD.0000000000004560
38. Eslamian G., Ardehali S.H., Baghestani A.R., Shariatpanahi Z.V. Effects of early enteral bovine colostrum supplementation on intestinal permeability in critically ill patients: A randomized, double-blind, placebo-controlled study. Nutrition. 2019; 60: 106–11. DOI: https://doi.org/10.1016/j.nut.2018.10.013
39. Cesarone M.R., Belcaro G., Di Renzo A., Dugall M., Cacchio M., Ruffini I., et al. Prevention of influenza episodes with colostrum compared with vaccination in healthy and high-risk cardiovascular subjects: The epidemiologic study in San Valentino. Clin Appl Thromb Hemost. 2007; 13 (2): 130–6. DOI: https://doi.org/10.1177/1076029606295957
40. Uchida K., Hiruta N., Yamaguchi H., Yamashita K., Fujimura K., Yasui H. Augmentation of cellular immunity and protection against influenza virus infection by bovine late colostrum in mice. Nutrition. 2012; 28: 442–6. DOI: https://doi.org/10.1016/j.nut.2011.07.021
41. Wong E.B., Mallet J.F., Duarte J., Matar C., Ritz B.W. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4. Nutr Res. 2014; 34 (4): 318–25. DOI: https://doi.org/10.1016/j.nutres.2014.02.007
42. Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: Anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020; 34 (2): 11–5. DOI: https://doi.org/10.23812/20-1-E
43. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: Immunity. inflammation and intervention. Nat Rev Immunol. 2020; 20 (6): 363–74. DOI: https://doi.org/10.1038/s41577-020-0311-8
44. Carvalho C.A.M., Matos A.R., Caetano B.C., Sousa Junior I.P., Campos S.P.C., Geraldino B.R. In vitro inhibition of SARS-CoV-2 infection by bovine lactoferrin. bioRxiv. 2020. (preprint). DOI: https://doi.org/10.1101/2020.05.13.093781
45. Chang R., Ng T.B., Sun W.-Z. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents. 2020; 56 (3): 1–7. DOI: https://doi.org/10.1016/j.ijantimicag.2020.106118
46. Serrano G., Kochergina I., Albors A., Diaz E., Oroval M., Hueso G., et al. Liposomal lactoferrin as potential preventative and cure for COVID-19. Int J Res Health Sci. 2020; 8 (1): 8–15. DOI: https://doi.org/10.5530/ijrhs.8.1.3
47. Kell D.B., Heyden E.L., Pretorius E. The biology of lactoferrin. an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 2020; 11: 1–15. DOI: https://doi.org/10.3389/fimmu.2020.01221
48. Keech A. Novel immunologically active peptide fragments of a proline-rich polypeptide isolated from colostral mammalian fluids for treatment of viral and non-viral diseases or diseased conditions. US 20070212367 A1 (2007).
49. Oloroso-Chavez K., Andaya P., Wong C. OR082 bovine colostrum supplementation in respiratory allergies according to sensitization: Subgroup analysis of randomized controlled trial. Ann Allergy Asthma Immunol. 2017; 119 (5): 11–2. DOI: https://doi.org/10.1016/j.anai.2017.08.062
50. Kaur G., Somaiya R., Wasim M., Buttar H.S. Cardioprotective effects of bovine colostrum against isoproterenol-induced myocardial infarction in rats. J Pharmacol Toxicol. 2014; 9: 37–45. DOI: https://doi.org/10.3923/jpt.2014.37.45
51. Bagwe S., Tharappel L., Kaur G., Buttar H. Bovine colostrum: An emerging nutraceutical. J Complement Integr Med. 2015; 12 (3): 175–85. DOI: https://doi.org/10.1515/jcim-2014-0039
52. Teixeira F.J., Santos H.O., Howell S.L., Pimentel G.D. Whey protein in cancer therapy: A narrative review. Pharmacol Res. 2019; 144: 245–56. DOI: https://doi.org/10.1016/j.phrs.2019.04.019
53. Tsuda H., Fukamachi K., Xu J., Sekine K., Ohkubo S., Takasuka N., et al. Prevention of carcinogenesis and cancer metastasis by bovine lactoferrin. Proc Jpn Acad Ser B Phys Biol Sci. 2006; 82: 208–15. DOI: https://doi.org/10.2183/pjab.82.208
54. Cutone A., Rosa L., Ianiro G., Lepanto M.S., Bonaccorsi di Patti M.C., Valenti P., et al. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules. 2020; 10: 456. DOI: https://doi.org/10.3390/biom10030456
55. Sienkiewicz M., Szymańska P., Fichna J. Supplementation of bovine colostrum in inflammatory bowel disease: Benefits and contraindications. Adv Nutr. 2021; 12 (2): 533–45. DOI: https://doi.org/10.1093/advances/nmaa120
56. Dzik S., Miciński B., Aitzhanova I., Miciński J., Pogorzelska J., Beisenov A. Properties of bovine colostrum and the possibilities of use. Pol Ann Med. 2017; 24 (2): 295–9. DOI: https://doi.org/10.1016/j.poamed.2017.03.004
57. Mehra R., Singh R., Nayan V., Buttar H.S., Kumar N., Kumar S., et al. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Biosci. 2021; 40: 100907. DOI: https://doi.org/10.1016/j.fbio.2021.100907
58. Menchetti L., Traina G., Tomasello G., Casagrande-Proietti P., Leonardi L., Barbato O., et al. Potential benefits of colostrum in gastrointestinal diseases. Front Biosci (Schol Ed). 2016; 8 (2): 331–51. DOI: https://doi.org/10.2741/s467
59. Spalinger M., Atrott K., Baebler K., Schwarzfischer M., Melhem H., Peres D., et al. Administration of the hyper-immune bovine colostrum extract IMM-124E ameliorates experimental murine colitis. J Crohns Colitis. 2019; 13 (6): 785–97. DOI: https://doi.org/10.1093/ecco-jcc/jjy213
60. Jahantigh M., Atyabi N., Pourkabir M., Jebelli Javan A., Afshari M. The effect of dietary bovine colostrum supplementation onserum malondialdehyde levels and antioxidant activity in alloxan-induced diabetic rats. Iran J Vet Res. 2011; 5 (1): 63–7. DOI: https://doi.org/10.22059/ijvm.2011.22674
61. Pan D., Liu H. Preventive effect of ordinary and hyperimmune bovine colostrums on mice diabetes induced by alloxan. Afr J Biotechnol. 2008; 7 (24): 4369–75. DOI: https://doi.org/10.5897/AJB08.877
62. Kim J., Jung W., Choi N.J., Kim D.O., Shin D.H., Kim J. Health promoting effects of bovine colostrum in type 2 diabetic patients to reduce blood glucose, cholesterol, triglyceride, and ketones. J Nutr Biochem. 2009; 20: 298–303. DOI: https://doi.org/10.1016/j.jnutbio.2008.04.002
63. Jones A.W., March D.S., Curtis F., Bridle C. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: A systematic review and meta-analysis of randomised controlled trials. BMC Sports Sci Med Rehabil. 2016; 8: 21. DOI: http://dx.doi.org/10.1186/s13102-016-0047-8
64. March D.S., Jones A.W., Thatcher R., Davison G. The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur J Nutr. 2019; 58 (4): 1441–51. DOI: http://dx.doi.org/10.1007/s00394-018-1670-9
65. Hałasa M., Maciejewska D., Baśkiewicz-Hałasa M., Machaliński B., Safranow K., Stachowska E. Oral supplementation with bovine colostrum decreases intestinal permeability and stool concentrations of zonulin in athletes. Nutrients. 2017; 9 (4): 370. DOI: http://dx.doi.org/10.3390/nu9040370
66. Cieślicka M., Ostapiuk-Karolczuk J., Dziewiecka H., Kasperska A., Skarpańska-Stejnborn A. Effects of long-term supplementation of bovine colostrum on iron homeostasis, oxidative stress, and inflammation in female athletes: A placebo-controlled clinical trial. Nutrients. 2023; 15 (1): 186. DOI: https://doi.org/10.3390/nu15010186
67. Zhang H. Amelioration of decline in immune function in athletes after high-intensity training by bovine colostrum. Curr Top Nutraceutical Res. 2019; 17 (2): 219–22. DOI: https://doi.org/10.37290/ctnr2641
68. Shing C.M., Jenkins D.G., Stevenson L., Coombes J.S. The influence of bovine colostrum supplementation on exercise performance in highly-trained cyclists. Br J Sports Med. 2006; 40 (9): 797–801. DOI: https://doi.org/10.1136/bjsm.2006.027946
69. URL: https://www.yahoo.com/lifestyle/bovine-colostrum-market-size-2022-120500326.html
70. Poonia A. Bioactive compounds, nutritional profile and health benefits of colostrum: A review. Food Prod Process Nutr. 2022; 4 (1): 26. DOI: https://doi.org/10.1186/s43014-022-00104-1
71. Silva E., Rangel A., Mürmam L., Bezerra M., de Oliveira J. Bovine colostrum: benefits of its use in human food. Food Sci Technol. 2019; 39 (suppl 2): 355–62. DOI: https://doi.org/10.1590/fst.14619
72. Mehra R., Garhwal R., Sangwan K., Guiné R., Lemos E., Buttar H. Insights into the research trends on bovine colostrum: beneficial health perspectives with special reference to manufacturing of functional foods and feed supplements. Nutrients. 2022; 14 (3): 659. DOI: https://doi.org/10.3390/nu14030659