The oral microbiome in the context of systemic disease


The oral microbiome is a community of symbiotic, commensal and opportunistic microorganisms, usually present in the form of biofilm, that plays a critical role in maintaining the homeostasis and protective function of the oral cavity. Recently, the study of the human oral microbiome to develop new diagnostic and therapeutic approaches has become a promising new area of the research in the field of personalized medicine.

The aim of this review was to generalise and analyse the accumulated data on the relationship between the oral microbiome characteristics and the course of systemic diseases.

Material and methods. Literature searches were performed using RSCI, PubMed, Google Scholar, and included original research data published mainly in the last 5 years.

Results. The review summarized data on the role of the oral microbiome in the development of a number of systemic diseases, including alimentary diseases. The importance of the major exogenous and endogenous factors that lead to changes in the oral microbiome, including diet, macro- and micronutrient composition of foods, was highlighted. Data were provided on the main types of microorganisms associated with the development and course of a number of somatic diseases, represented mainly by obligate anaerobic periodontal pathogens (Tannerella forsythia, Treponema denticola, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans). The role of the systemic inflammatory response as the main pathogenetic factor of oral dysbiosis has been described. The benefits of periodontal therapy in metabolic disorders such as diabetes mellitus, obesity, and dyslipidemia have been discussed. Promising approaches to correct oral dysbiosis have been presented.

Conclusion. The knowledge of the relationships between the oral microbiome composition, the development and characteristics of the course of somatic disease can contribute to the development of new technologies for its prevention and treatment. The change in the structure of the oral microbiome observed in systemic diseases is usually accompanied by a decrease in bacterial diversity and an increase in the number of pathogenic bacteria. Lifestyle modification, dietary therapy, smoking cessation, rational use of antibacterial drugs and treatment of periodontitis play an important role in normalising the structure of the oral microbiome.

Keywords:oral microbiome; periodontitis; colorectal cancer; atherosclerosis; obesity; diabetes mellitus; Alzheimer’s disease

Funding. The research was carried out at the expense of the Russian Science Foundation (grant No. 22-15-00252).

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Leonov G.E.; collection of material – Leonov G.E., Varaeva Yu.R., Livantsova E.N.; writing the text – Leonov G.E., Varaeva Yu.R., Starodubova A.V.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Leonov G.E., Varaeva Yu.R., Livantsova E.N., Starodubova A.V. The oral microbiome in the context of systemic disease. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (4): 6–19. DOI: (in Russian)


1. Willis J.R., Gabaldón T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms. 2020; 8 (2): 308. DOI:

2. Lee Y.-H., Chung S.W., Auh Q.S., Hong S.J., Lee Y.A., Jung J., et al. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics (Basel). 2021; 11 (7): 1283. DOI:

3. Oren A., Garrity G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021; 71 (10): e005056. DOI:

4. Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C., Yu W.H., et al. The human oral microbiome. J Bacteriol. 2010; 192 (19): 5002–17. DOI:

5. Peng X., Cheng L., You Y., Tang C., Ren B., Li Y., et al. Oral Microbiota in human systematic diseases. Int J Oral Sci. 2022; 14 (1): 14. DOI:

6. Zoheir N., Kurushima Y., Lin G.-H., Nibali L. Periodontal infectogenomics: a systematic review update of associations between host genetic variants and subgingival microbial detection. Clin Oral Invest. 2022; 26 (3): 2209–21. DOI:

7. Borilova Linhartova P., Danek Z., Deissova T., Hromcik F., Lipovy B., Szaraz D., et al. Interleukin gene variability and periodontal bacteria in patients with generalized aggressive form of periodontitis. Int J Mol Sci. 2020; 21 (13): 4728. DOI:

8. Брагина Т.В., Шевелева С.А., Елизарова Е.В., Рыкова С.М., Тутельян В.А. Структура маркеров микробиоты кишечника в крови у спортсменов и их взаимосвязь с рационом питания // Вопросы питания. 2022. Т. 91, № 4. С. 35–46. DOI: [Bragina T.V., Sheveleva S.A., Elizarova E.V., Rykova S.M., Tutelyan V.A. The structure of blood gut microbiota markers in athletes and their relationship with the diet. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (4): 35–46. DOI: (in Russian)]

9. Khan S., Waliullah S., Godfrey V., Khan M.A.W., Ramachandran R.A., Cantarel B.L., et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med. 2020; 12: 567. DOI:

10. Sedghi L., DiMassa V., Harrington A., Lynch S.V., Kapila Y.L. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000. 2021; 87: 107–31. DOI:

11. Inquimbert C., Bourgeois D., Bravo M., Viennot S., Tramini P., Llodra J.C., et al. The oral bacterial microbiome of interdental surfaces in adolescents according to carious risk. Microorganisms. 2019; 9: 319. DOI:

12. Takahashi N., Washio J., Mayanagi G. Metabolomics of supragingival plaque and oral bacteria. J Dent Res. 2010; 89: 1383–8. DOI:

13. O’Mahoney L.L., Matu J., Price O.J., Birch K.M., Ajjan R.A., Farrar D., et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol. 2018; 17 (1): 98. DOI:

14. Dodington D.W., Fritz P.C., Sullivan P.J., Ward W.E. Higher intakes of fruits and vegetables, β-carotene, vitamin C, α-tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. J Nutr. 2015; 145: 2512–9. DOI:

15. Tada A., Miura H. The relationship between vitamin C and periodontal diseases: a systematic review. Int J Environ Res Public Health. 2019; 16: 2472. DOI:

16. Alzahrani A.A.H., Alharbi R.A., Alzahrani M.S.A., Sindi M.A., Shamlan G., Alzahrani F.A., et al. Association between periodontitis and vitamin D status: a case-control study. Saudi J Biol Sci. 2021; 28: 4016–21. DOI:

17. Ustianowski Ł., Ustianowska K., Gurazda K., Rusiński M., Ostrowski P., Pawlik A. The role of vitamin C and vitamin D in the pathogenesis and therapy of periodontitis – narrative review. Int J Mol Sci. 2023; 24: 6774. DOI:

18. Wu J., Peters B.A., Dominianni C., Zhang Y., Pei Z., Yang L., et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016; 10 (10): 2435–46. DOI:

19. Langdon A., Crook N., Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8 (1): 39. DOI:

20. Raju S.C., Viljakainen H., Figueiredo R.A., Neuvonen P.J., Eriksson J.G., Weiderpass E., et al. Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition. Microbiome. 2020; 8 (1): 121. DOI:

21. Larsson Wexell C., Ryberg H., Sjöberg Andersson W.-A., Blomqvist S., Colin P., Van Bocxlaer J., et al. Antimicrobial effect of a single dose of amoxicillin on the oral microbiota. Clin Implant Dent Relat Res. 2015; 18 (4): 699–706. DOI:

22. Jang H., Patoine A., Wu T.T., Castillo D.A., Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep. 2021; 11: 16870. DOI:

23. Ye C., Kapila Y. Oral microbiome shifts during pregnancy and adverse pregnancy outcomes: Hormonal and Immunologic changes at play. Periodontol 2000. 2021; 87: 276–81. DOI:

24. Read E., Curtis M.A., Neves J.F. The role of oral bacteria in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021; 18 (10): 731–42. DOI:

25. Karpiński T. Role of oral microbiota in cancer development. Microorganisms. 2019; 7 (1): 20. DOI:

26. Pietiäinen M., Liljestrand J.M., Kopra E., Pussinen P.J. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci. 2018; 126 (S1): 26–36. DOI: PMID: 30178551.

27. Kamer A.R., Pushalkar S., Gulivindala D., Butler T., Li Y., Annam K.R., et al. Periodontal dysbiosis associates with reduced CSF AΒ42 in cognitively normal elderly. Alzheimers Dement (Amst). 2021; 13 (1): e12172. DOI:

28. Latti B.R., Kalburge J.V., Birajdar S.B., Latti R.G. Evaluation of relationship between dental caries, diabetes mellitus and oral microbiota in diabetics. J Oral Maxillofac Pathol. 2018; 22 (2): 282. DOI:

29. Wegner N., Wait R., Sroka A., Eick S., Nguyen K.-A., Lundberg K., et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010; 62 (9): 2662–72. DOI:

30. Lim Y., Kim H.Y., An S.-J., Choi B.-K. Activation of bone marrow-derived dendritic cells and CD4 + T cell differentiation by outer membrane vesicles of periodontal pathogens. J Oral Microbiol. 2022; 14 (1): e2123550. DOI:

31. Slocum C., Kramer C., Genco C.A. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med. 2016; 280 (1): 114–28. DOI:

32. Roth C.E., Craveiro R.B., Niederau C., Malyaran H., Neuss S., Jankowski J., et al. Mechanical compression by simulating orthodontic tooth movement in an in vitro model modulates phosphorylation of AKT and MAPKS via TLR4 in human periodontal ligament cells. Int J Mol Sci. 2022; 23 (15): 8062. DOI:

33. Popova C., Dosseva-Panova V., Panov V. Microbiology of periodontal diseases. a review. Biotechnol Biotechnol Equip. 2013; 27 (3): 3754–9. DOI:

34. Schön C.M., Craveiro R.B., Niederau C., Conrads G., Jahr H., Pufe T., et al. High concentrations of Porphyromonas gingivalis-LPS downregulate TLR4 and modulate phosphorylation of ERK and Akt in murine cementoblasts. Ann Anat. 2023; 246: 152023. DOI:

35. Николайчук А.В., Соколова А.В., Драгунов Д.О., Тихомирова М.А., Дуванов И.А. Изменение микробиоты кишечника и риск прогрессирования саркопении // Лечебное дело. 2020. № 1. С. 18–22. DOI: [Nikolaychuk A.V., Sokolova A.V., Dragunov D.O., Tikhomirova M.A., Duvanov I.A. Changes in intestinal microbiota and the risk of sarcopenia progression. Lechebnoe delo [Medical Care]. 2020; (1): 18–22. DOI: (in Russian)]

36. Montenegro M.M., Ribeiro I.W., Kampits C., Saffi M.A., Furtado M.V., Polanczyk C.A., et al. Randomized controlled trial of the effect of periodontal treatment on cardiovascular risk biomarkers in patients with stable coronary artery disease: preliminary findings of 3 months. J Clin Periodontol. 2019; 46 (3): 321–31. DOI:

37. Olsen I., Yamazaki K. Can oral bacteria affect the microbiome of the gut? J Oral Microbiol. 2019; 11 (1): 1586422. DOI:

38. Cotter P.D., Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev. 2003; 67 (3): 429–53. DOI:

39. Kitamoto S., Nagao-Kitamoto H., Hein R., Schmidt T.M., Kamada N. The bacterial connection between the oral cavity and the gut diseases. J Dent Res. 2020; 99 (9): 1021–9. DOI:

40. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021; 21: 426–40. DOI:

41. Hu S., Mok J., Gowans M., Ong D.E., Hartono J.L., Lee J.W. Oral microbiome of Сrohn’s disease patients with and without oral manifestations. J Crohns Colitis. 2022; 16: 1628–36. DOI:

42. Zhang S., Kong C., Yang Y., Cai S., Li X., Cai G., et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Theranostics. 2020; 10: 11 595–606. DOI:

43. Sun J.H., Li X.L., Yin J., Li Y.H., Hou B.X., Zhang Z. A screening method for gastric cancer by oral microbiome detection. Oncol Rep. 2018; 39: 2217–24. DOI:

44. Peters B.A., Wu J., Pei Z., Yang L., Purdue M.P., Freedman N.D., et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017; 77: 6777–87. DOI:

45. Alazawi W., Bernabe E., Tai D., Janicki T., Kemos P., Samsuddin S., et al. Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver disease. PLoS One. 2017. Vol. 12: e185902. DOI:

46. Gamal-AbdelNaser A., Mohammed W.S., ElHefnawi M., AbdAllah M., Elsharkawy A., Zahran F.M. The oral microbiome of treated and untreated chronic HCV infection: a preliminary study. Oral Dis. 2023; 29: 843–52. DOI:

47. Said H.S., Suda W., Nakagome S., Chinen H., Oshima K., Kim S., et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2013; 21 (1): 15–25. DOI:

48. Kaur C.P., Vadivelu J., Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis. 2018; 19 (5): 262–71. DOI:

49. Li C., Yu R., Ding Y. Association between Porphyromonas gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 2022; 12: 1026457. DOI:

50. Stein J.M., Lammert F., Zimmer V., Granzow M., Reichert S., Schulz S., et al. Clinical periodontal and microbiologic parameters in patients with Crohn’s disease with consideration of the CARD15 genotype. J Periodontol. 2010; 81 (4): 535–45. DOI:

51. Yoneda M., Naka S., Nakano K., Wada K., Endo H., Mawatari H., et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012; 12 (1): 16. DOI:

52. Nakahara T., Hyogo H., Ono A., Nagaoki Y., Kawaoka T., Miki D., et al. Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease. J Gastroenterol. 2017; 53 (2): 269–80. DOI:

53. Aberg F., Helenius-Hietala J. Oral health and liver disease: bidirectional associations – a narrative review. Dent J (Basel). 2022; 21: 16. DOI:

54. Komazaki R., Katagiri S., Takahashi H., Maekawa S., Shiba T., Takeuchi Y., et al. Periodontal pathogenic bacteria, Aggregatibacter actinomycetemcomitans affect non-alcoholic fatty liver disease by altering gut microbiota and glucose metabolism. Sci Rep. 2017; 7 (1): 13950. DOI:

55. Weng M.T., Chiu Y.T., Wei P.Y., Chiang C.W., Fang H.L., Wei S.C. Microbiota and gastrointestinal cancer. J Formos Med Assoc. 2019; 118 (suppl 1): S32–41. DOI:

56. Kageyama S., Takeshita T., Takeuchi K., Asakawa M., Matsumi R., Furuta M., et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019; 2: 1780. DOI:

57. Minarovits J. Anaerobic bacterial communities associated with oral carcinoma: intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 2021; 68: 102300. DOI:

58. Chattopadhyay I., Verma M., Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat. 2019; 18: 153303381986735. DOI:

59. Pignatelli P., Iezzi L., Pennese M., Raimondi P., Cichella A., Bondi D., et al. The potential of colonic tumor tissue fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers (Basel). 2021; 13 (5): 1032. DOI:

60. Aymeric L., Donnadieu F., Mulet C., du Merle L., Nigro G., Saffarian A., et al. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci USA. 2017; 115 (2): E283–91. DOI:

61. Liljestrand J.M., Paju S, Pietiäinen M., Buhlin K., Persson G.R., Nieminen M.S., et al. Immunologic burden links periodontitis to acute coronary syndrome. Atherosclerosis. 2018; 268: 177–84. DOI:

62. Noble J.M., Borrell L.N., Papapanou P.N., Elkind M.S., Scarmeas N., Wright C.B. Periodontitis is associated with cognitive impairment among older adults: analysis of Nhanes-III. Neurol Neurosurg Psychiatry. 2009; 80 (11): 1206–11. DOI:

63. Eriksen L., Grønbæk M., Helge J.W., Tolstrup J.S., Curtis T. The Danish Health Examination Survey 2007–2008 (DANHES 2007–2008). Scand J Public Health. 2011; 39 (2): 203–11. DOI:

64. Talha K.M., Baddour L.M., Thornhill M.H., Arshad V., Tariq W., Tleyjeh I.M., et al. Escalating incidence of infective endocarditis in Europe in the 21st century. Open Heart. 2021; 8 (2): e001846. DOI:

65. Del Giudice C., Vaia E, Liccardo D., Marzano F., Valletta A., Spagnuolo G., et al. Infective endocarditis: a focus on oral microbiota. Microorganisms. 2021; 9 (6): 1218. DOI:

66. Liesenborghs L., Meyers S., Vanassche T., Verhamme P. Coagulation: at the heart of infective endocarditis. J Thromb Haemost. 2020; 18: 995–1008. DOI:

67. Herzberg M.C., Nobbs A., Tao L., Kilic A., Beckman E., Khammanivong A., et al. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J Periodontol. 2005; 76: 2101–5. DOI:

68. Chidambar C.K., Shankar S.M., Raghu P., Gururaj S.B., Bushan K.S. Detection of Enterococcus faecalis in subgingival biofilms of healthy, gingivitis, and chronic periodontitis subjects. J Indian Soc Periodontol. 2019; 23 (5): 416–8. DOI:

69. Najafi K., Ganbarov K., Gholizadeh P., Tanomand A., Rezaee M.A., Mahmood S.S., et al. Oral cavity infection by Enterococcus faecalis: virulence factors and pathogenesis. Rev Med Microbiol. 2020; 31 (2): 51–60. DOI:

70. Dahl A., Miro J.M., Bruun N.E. Enterococcus faecalis bacteremia: please do the echo. Aging (Albany NY). 2019; 11: 10 786–7. DOI:

71. Fu Y., Maaβ S., du Teil Espina M., Wolters A.H., Gong Y., de Jong A., et al. Connections between exoproteome heterogeneity and virulence in the oral pathogen Aggregatibacter actinomycetemcomitans. mSystems. 2022; 7 (3): e0025422. DOI:

72. Radwan-Oczko M., Jaworski A., Duś I., Plonek T., Szulc M., Kustrzycki W., et al. Porphyromonas gingivalis in periodontal pockets and heart valves. Virulence. 2014; 5 (4): 575–80. DOI:

73. Longenecker C.T., Hoit B.D. Imaging atherosclerosis in HIV: Carotid intima-media thickness and beyond. Transl Res. 2012; 159 (3): 127–39. DOI:

74. Sanz M., Marco del Castillo A., Jepsen S., Gonzalez-Juanatey J.R., D’Aiuto F., Bouchard P., et al. Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol. 2020; 47 (3): 268–88. DOI:

75. Vieira R.W. Cardiovascular and periodontal diseases. Rev Bras Cir Cardiovasc. 2014; 29 (1): VII–IX. DOI:

76. Schenkein H.A., Papapanou P.N., Genco R., Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000. 2020; 83 (1): 90–106. DOI:

77. Ruan Q., Guan P., Qi W., Li J., Xi M., Xiao L., et al. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol. 2023; 14: 1103592. DOI:

78. Zou Y., Huang Y., Liu S., Yang J., Zheng W., Deng Y., et al. Periodontopathic microbiota and atherosclerosis: roles of TLR-mediated inflammation response. Oxid Med Cell Longev. 2022; 2022: 9611362. DOI:

79. Fentoğlu Ö., Tözüm Bulut M., Doğan B., Kırzıoğlu F.Y., Kemer Doğan E.S. Is the relationship between periodontitis and hyperlipidemia mediated by lipoprotein-associated inflammatory mediators? Periodontal Implant Sci. 2020; 50 (3): 135. DOI:

80. Fentoglu O., Bozkurt F.Y. The bi-directional relationship between periodontal disease and hyperlipidemia. Eur J Dent. 2008; 2 (2): 142–6.

81. Larvin H., Kang J., Aggarwal V.R., Pavitt S., Wu J. Risk of incident cardiovascular disease in people with periodontal disease: a systematic review and meta-analysis. Clin Exp Dent Res. 2021; 7 (1): 109–122. DOI:

82. Isola G., Polizzi A., Alibrandi A., Williams R.C., Leonardi R. Independent impact of periodontitis and cardiovascular disease on elevated soluble urokinase-type plasminogen activator receptor (supar) levels. J Periodontol. 2020; 92 (6): 896–906. DOI:

83. Herrera D., Molina A., Buhlin K., Klinge B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000. 2020; 83 (1): 66–89. DOI:

84. Velissaris D., Zareifopoulos N., Koniari I., Karamouzos V., Bousis D., Gerakaris A., et al. Soluble urokinase plasminogen activator receptor as a diagnostic and prognostic biomarker in cardiac disease. J Clin Med Res. 2021; 13 (1): 133–42. DOI:

85. Fang Y., Fan C., Xie H. Effect of Helicobacter pylori infection on the risk of acute coronary syndrome: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98: 18348. DOI:

86. Bloemenkamp D.G., Mali W.P., Tanis B.C., Rosendaal F.R., van den Bosch M.A., Kemmeren J.M., et al. Chlamydia pneumoniae, Helicobacter pylori and cytomegalovirus infections and the risk of peripheral arterial disease in young women. Atherosclerosis. 2002; 163: 149–56. DOI:

87. Nguyen A.T., Akhter R., Garde S., Scott C., Twigg S.M., Colagiuri S., et al. The association of periodontal disease with the complications of diabetes mellitus. a systematic review. Diabetes Res Clin Pract. 2020; 165: 108244. DOI:

88. Matsha T.E., Prince Y., Davids S., Chikte U., Erasmus R.T., Kengne A.P., et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res. 2020; 99 (6): 658–65. DOI:

89. Isola G., Lo Giudice A., Polizzi A., Alibrandi A., Murabito P., Indelicato F. Identification of the different salivary interleukin-6 profiles in patients with periodontitis: a cross-sectional study. Arch Oral Biol. 2021; 122: 104997. DOI:

90. Mattera M.S., Chiba F.Y., Lopes F.L., Tsosura T.V., Peres M.A., Brito V.G., et al. Effect of maternal periodontitis on glut4 and inflammatory pathway in adult offspring. J Periodontol. 2019; 90 (8): 884–93. DOI:

91. Bhat U.G., Ilievski V., Unterman T.G., Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol. 2014; 85 (11): 1629–36. DOI:

92. Chen S., Lin G., You X., Lei L., Li Y., Lin M., et al. Hyperlipidemia causes changes in inflammatory responses to periodontal pathogen challenge: implications in acute and chronic infections. Arch Oral Biol. 2014; 59 (10): 1075–84. DOI:

93. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017; 44 (2): 532–53. DOI:

94. Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; 9: 8609213. DOI:

95. Prame Kumar K., Nicholls A.J., Wong C.H. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018; 371 (3): 551–65. DOI:

96. Grover H.S., Luthra S. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol. 2013; 17: 292–301. DOI:

97. Kuraji R., Ito H., Fujita M., Ishiguro H., Hashimoto S., Numabe Y. Porphyromonas gingivalis induced periodontitis exacerbates progression of non-alcoholic steatohepatitis in rats. Clin Exp Dent Res. 2016; 28 (3): 216–25. DOI:

98. Мартинчик А.Н., Лайкам К.Э., Козырева Н.А., Кешабянц Э.Э., Михайлов НА., Батурин А.К., Смирнова Е.А. Распространение ожирения в различных социально-демографических группах населения России // Вопросы питания. 2021. Т. 90, № 3. С. 67–76. DOI: [Martinchik A.N., Laykam K.E., Kozyreva N.A., Keshabyants E.E., Mikhaylov N.A., Baturin A.K., Smirnova E.A. The prevalence of obesity in various socio-demographic groups of the population of Russia. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (3): 67–76. DOI: (in Russian)]

99. Lin X., Li H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021; 12: 706978. DOI:

100. Kirichenko T.V., Markina Y.V., Bogatyreva A.I., Tolstik T.V., Varaeva Y.R., Starodubova A.V. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci. 2022; 23 (23): 14982. DOI:

101. Dahiya P., Kamal R., Gupta R. Obesity, periodontal and general health: relationship and management. Indian J Endocrinol Metab. 2012; 16 (1): 88. DOI:

102. Jia R., Zhang Y., Wang Z., Hu B., Wang Z., Qiao H. Association between lipid metabolism and periodontitis in obese patients: a cross-sectional study. BMC Endocr Disord. 2023; 25: 119. DOI:

103. Hu X., Zhang Q., Zhang M., Yang X., Zeng T.S., Zhang J.Y., et al. Tannerella forsythia and coating color on the tongue dorsum, and fatty food liking associate with fat accumulation and insulin resistance in adult catch-up fat. Int J Obes (Lond). 2018; 42: 121–8. DOI:

104. Zheng F., Su L., Zhang N., Liu L., Gu J., Du W. Porphyromonasgingivali-derived lipopolysaccharide inhibits brown adipocyte differentiation via lncrna-bate10. Exp Ther Med. 2022; 24 (6): 718. DOI:

105. Thouvenot K., Turpin T., Taïlé J., Clément K., Meilhac O., Gonthier M.-P. Links between insulin resistance and periodontal bacteria: Insights on molecular players and therapeutic potential of polyphenols. Biomolecules. 2022; 12 (3): 378. DOI:

106. de Andrade D.R., Silva P.A., Colombo A.P., Silva-Boghossian C.M. Subgingival microbiota in overweight and obese young adults with no destructive periodontal disease. J Periodontol. 2021; 92 (10): 1410–9. DOI:

107. Sales-Peres S.H.C., Sales-Peres M.C., Ceneviva R., Bernabé E. Weight loss after bariatric surgery and periodontal changes: a 12-month prospective study. Surg Obes Relat Dis. 2017; 13 (4): 637–42. DOI:

108. Nonaka S., Kadowaki T., Nakanishi H. Secreted gingipains from Porphyromonas gingivalis increase permeability in human cerebral microvascular endothelial cells through intracellular degradation of tight junction proteins. Neurochem Int. 2022; 154: 105282. DOI:

109. Ball J., Darby I. Mental health and periodontal and peri-implant diseases. Periodontol 2000. 2022; 90 (1): 106–24. DOI:

110. Ding Y., Ren J., Yu H., Yu W., Zhou Y. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. Immun Ageing. 2018; 15 (1): 6. DOI:

111. Holmer J., Eriksdotter M., Schultzberg M., Pussinen P.J., Buhlin K. Association between periodontitis and risk of Alzheimer’s disease, mild cognitive impairment and subjective cognitive decline: a case-control study. J Clin Periodontol. 2018; 45 (11): 1287–98. DOI:

112. Ishida N., Ishihara Y., Ishida K., Tada H., Funaki-Kato Y., Hagiwara M., et al. Periodontitis induced by bacterial infection exacerbates features of alzheimer’s disease in Transgenic Mice. NPJ Aging Mech Dis. 2017; 3 (1): 15. DOI:

113. Zhang J., Yu C., Zhang X., Chen H., Dong J., Lu W., et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018; 15 (1): 37. DOI:

114. Hashioka S., Inoue K., Miyaoka T., Hayashida M., Wake R., OhNishi A., et al. The possible causal link of periodontitis to neuropsychiatric disorders: more than psychosocial mechanisms. Int J Mol Sci. 2019; 20 (15): 3723. DOI:

115. Ide M., Harris M., Stevens A., Sussams R., Hopkins V., Culliford D., et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One. 2016; 11 (3): e0151081. DOI:

116. Chen C.K., Wu Y.T., Chang Y.C. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 2017; 5: e3647. DOI:

117. Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019; 5 (1): eaau3333. DOI:

118. Wu L., Su X., Tang Z., Jian L., Zhu H., Cheng X., et al. Treponema denticola induces neuronal apoptosis by promoting amyloid-β accumulation in mice. Pathogens. 2022; 11 (10): 1150. DOI:

119. Da D., Zhao Q., Zhang H., Wu W., Zeng X., Liang X., et al. Oral microbiome in older adults with mild cognitive impairment. J Oral Microbiol. 2023; 15 (1): 2173544. DOI:

120. Chen C.K., Huang J.Y., Wu Y.T., Chang Y.C. Dental scaling decreases the risk of Parkinson’s disease: a nationwide population-based nested case-control study. Int J Environ Res Public Health. 2018; 15 (8): 1587. DOI:

121. Martimbianco A.L.C., Prosdocimi F.C., Anauate-Netto C., Dos Santos E.M., Mendes G.D., Fragoso Y.D. Evidence-based recommendations for the oral health of patients with Parkinson’s disease. Neurol Ther. 2021; 10: 391–400. DOI:

122. Leira Y., Seoane J., Blanco M., Rodríguez-Yáñez M., Takkouche B., Blanco J., et al. Association between periodontitis and ischemic stroke: a systematic review and meta-analysis. Eur J Epidemiol. 2016; 32 (1): 43–53. DOI:

123. Chi L., Cheng X., He X., Sun J., Liang F., Pei Z., et al. Increased cortical infarction and neuroinflammation in ischemic stroke mice with experimental periodontitis. Neuroreport. 2019; 30 (6): 428–33. DOI:

124. Lee H.R., Jun H.K., Choi B.K. Tannerella forsythia BSPA increases the risk factors for atherosclerosis in apoe −/− mice. Oral Dis. 2014; 20 (8): 803–8. DOI:

125. Velsko I.M., Harrison P., Chalmers N., Barb J., Huang H., Aukhil I., et al. Grade C molar-incisor pattern periodontitis subgingival microbial profile before and after treatment. J Oral Microbiol. 2020; 13 (12): 1814674. DOI:

126. Gandhi K.K., Pavaskar R., Cappetta E.G., Drew H.J. Effectiveness of adjunctive use of low-level laser therapy and photodynamic therapy after scaling and root planing in patients with chronic periodontitis. Int J Periodontics Restorative Dent. 2019; 39 (6): 837–43. DOI:

127. Kabwe M., Brown T.L., Dashper S., Speirs L., Ku H., Petrovski S., et al. Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms. Sci Rep. 2019; 24 (9): 9107. DOI:

128. Martinon P., Fraticelli L., Giboreau A., Dussart C., Bourgeois D., Carrouel F. Nutrition as a key modifiable factor for periodontitis and main chronic diseases. J Clin Med. 2021; 10: 197. DOI:

129. Laiola M., De Filippis F., Vitaglione P., Ercolini D. A Mediterranean diet intervention reduces the levels of salivary periodontopathogenic bacteria in overweight and obese subjects. Appl Environ Microbiol. 2020; 86 (12): e00777-20. DOI:

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»