The oral microbiome in the context of systemic disease
AbstractThe oral microbiome is a community of symbiotic, commensal and opportunistic microorganisms, usually present in the form of biofilm, that plays a critical role in maintaining the homeostasis and protective function of the oral cavity. Recently, the study of the human oral microbiome to develop new diagnostic and therapeutic approaches has become a promising new area of the research in the field of personalized medicine.
The aim of this review was to generalise and analyse the accumulated data on the relationship between the oral microbiome characteristics and the course of systemic diseases.
Material and methods. Literature searches were performed using RSCI, PubMed, Google Scholar, and included original research data published mainly in the last 5 years.
Results. The review summarized data on the role of the oral microbiome in the development of a number of systemic diseases, including alimentary diseases. The importance of the major exogenous and endogenous factors that lead to changes in the oral microbiome, including diet, macro- and micronutrient composition of foods, was highlighted. Data were provided on the main types of microorganisms associated with the development and course of a number of somatic diseases, represented mainly by obligate anaerobic periodontal pathogens (Tannerella forsythia, Treponema denticola, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans). The role of the systemic inflammatory response as the main pathogenetic factor of oral dysbiosis has been described. The benefits of periodontal therapy in metabolic disorders such as diabetes mellitus, obesity, and dyslipidemia have been discussed. Promising approaches to correct oral dysbiosis have been presented.
Conclusion. The knowledge of the relationships between the oral microbiome composition, the development and characteristics of the course of somatic disease can contribute to the development of new technologies for its prevention and treatment. The change in the structure of the oral microbiome observed in systemic diseases is usually accompanied by a decrease in bacterial diversity and an increase in the number of pathogenic bacteria. Lifestyle modification, dietary therapy, smoking cessation, rational use of antibacterial drugs and treatment of periodontitis play an important role in normalising the structure of the oral microbiome.
Keywords:oral microbiome; periodontitis; colorectal cancer; atherosclerosis; obesity; diabetes mellitus; Alzheimer’s disease
Funding. The research was carried out at the expense of the Russian Science Foundation (grant No. 22-15-00252).
Conflict of interest. The authors declare no conflict of interest.
Contribution. The concept and design of the study – Leonov G.E.; collection of material – Leonov G.E., Varaeva Yu.R., Livantsova E.N.; writing the text – Leonov G.E., Varaeva Yu.R., Starodubova A.V.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.
For citation: Leonov G.E., Varaeva Yu.R., Livantsova E.N., Starodubova A.V. The oral microbiome in the context of systemic disease. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (4): 6–19. DOI: https://doi.org/10.33029/0042-8833-2023-92-4-6-19 (in Russian)
References
1. Willis J.R., Gabaldón T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms. 2020; 8 (2): 308. DOI: https://doi.org/10.3390/microorganisms8020308
2. Lee Y.-H., Chung S.W., Auh Q.S., Hong S.J., Lee Y.A., Jung J., et al. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics (Basel). 2021; 11 (7): 1283. DOI: https://doi.org/10.3390/diagnostics11071283
3. Oren A., Garrity G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021; 71 (10): e005056. DOI: https://doi.org/10.1099/ijsem.0.005056
4. Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C., Yu W.H., et al. The human oral microbiome. J Bacteriol. 2010; 192 (19): 5002–17. DOI: https://doi.org/10.1128/JB.00542-10
5. Peng X., Cheng L., You Y., Tang C., Ren B., Li Y., et al. Oral Microbiota in human systematic diseases. Int J Oral Sci. 2022; 14 (1): 14. DOI: https://doi.org/10.1038/s41368-022-00163-7
6. Zoheir N., Kurushima Y., Lin G.-H., Nibali L. Periodontal infectogenomics: a systematic review update of associations between host genetic variants and subgingival microbial detection. Clin Oral Invest. 2022; 26 (3): 2209–21. DOI: https://doi.org/10.1007/s00784-021-04233-8
7. Borilova Linhartova P., Danek Z., Deissova T., Hromcik F., Lipovy B., Szaraz D., et al. Interleukin gene variability and periodontal bacteria in patients with generalized aggressive form of periodontitis. Int J Mol Sci. 2020; 21 (13): 4728. DOI: https://doi.org/10.3390/ijms21134728
8. Брагина Т.В., Шевелева С.А., Елизарова Е.В., Рыкова С.М., Тутельян В.А. Структура маркеров микробиоты кишечника в крови у спортсменов и их взаимосвязь с рационом питания // Вопросы питания. 2022. Т. 91, № 4. С. 35–46. DOI: https://doi.org/10.33029/0042-8833-2022-91-4-35-46 [Bragina T.V., Sheveleva S.A., Elizarova E.V., Rykova S.M., Tutelyan V.A. The structure of blood gut microbiota markers in athletes and their relationship with the diet. Voprosy pitaniia [Problems of Nutrition]. 2022; 91 (4): 35–46. DOI: https://doi.org/10.33029/0042-8833-2022-91-4-35-46 (in Russian)]
9. Khan S., Waliullah S., Godfrey V., Khan M.A.W., Ramachandran R.A., Cantarel B.L., et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med. 2020; 12: 567. DOI: https://doi.org/10.1126/scitranslmed.aay6218
10. Sedghi L., DiMassa V., Harrington A., Lynch S.V., Kapila Y.L. The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontol 2000. 2021; 87: 107–31. DOI: https://doi.org/10.1111/prd.12393
11. Inquimbert C., Bourgeois D., Bravo M., Viennot S., Tramini P., Llodra J.C., et al. The oral bacterial microbiome of interdental surfaces in adolescents according to carious risk. Microorganisms. 2019; 9: 319. DOI: https://doi.org/10.3390/microorganisms7090319
12. Takahashi N., Washio J., Mayanagi G. Metabolomics of supragingival plaque and oral bacteria. J Dent Res. 2010; 89: 1383–8. DOI: https://doi.org/10.1177/0022034510377792
13. O’Mahoney L.L., Matu J., Price O.J., Birch K.M., Ajjan R.A., Farrar D., et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol. 2018; 17 (1): 98. DOI: https://doi.org/10.1186/s12933-018-0740-x
14. Dodington D.W., Fritz P.C., Sullivan P.J., Ward W.E. Higher intakes of fruits and vegetables, β-carotene, vitamin C, α-tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. J Nutr. 2015; 145: 2512–9. DOI: https://doi.org/10.3945/jn.115.211524
15. Tada A., Miura H. The relationship between vitamin C and periodontal diseases: a systematic review. Int J Environ Res Public Health. 2019; 16: 2472. DOI: https://doi.org/10.3390/ijerph16142472
16. Alzahrani A.A.H., Alharbi R.A., Alzahrani M.S.A., Sindi M.A., Shamlan G., Alzahrani F.A., et al. Association between periodontitis and vitamin D status: a case-control study. Saudi J Biol Sci. 2021; 28: 4016–21. DOI: https://doi.org/10.1016/j.sjbs.2021.04.006
17. Ustianowski Ł., Ustianowska K., Gurazda K., Rusiński M., Ostrowski P., Pawlik A. The role of vitamin C and vitamin D in the pathogenesis and therapy of periodontitis – narrative review. Int J Mol Sci. 2023; 24: 6774. DOI: https://doi.org/10.3390/ijms24076774
18. Wu J., Peters B.A., Dominianni C., Zhang Y., Pei Z., Yang L., et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016; 10 (10): 2435–46. DOI: https://doi.org/10.1038/ismej.2016.37
19. Langdon A., Crook N., Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8 (1): 39. DOI: https://doi.org/10.1186/s13073-016-0294-z
20. Raju S.C., Viljakainen H., Figueiredo R.A., Neuvonen P.J., Eriksson J.G., Weiderpass E., et al. Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition. Microbiome. 2020; 8 (1): 121. DOI: https://doi.org/10.1186/s40168-020-00893-y
21. Larsson Wexell C., Ryberg H., Sjöberg Andersson W.-A., Blomqvist S., Colin P., Van Bocxlaer J., et al. Antimicrobial effect of a single dose of amoxicillin on the oral microbiota. Clin Implant Dent Relat Res. 2015; 18 (4): 699–706. DOI: https://doi.org/10.1111/cid.12357
22. Jang H., Patoine A., Wu T.T., Castillo D.A., Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep. 2021; 11: 16870. DOI: https://doi.org/10.1038/s41598-021-96495-1
23. Ye C., Kapila Y. Oral microbiome shifts during pregnancy and adverse pregnancy outcomes: Hormonal and Immunologic changes at play. Periodontol 2000. 2021; 87: 276–81. DOI: https://doi.org/10.1111/prd.12386
24. Read E., Curtis M.A., Neves J.F. The role of oral bacteria in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021; 18 (10): 731–42. DOI: https://doi.org/10.1038/s41575-021-00488-4
25. Karpiński T. Role of oral microbiota in cancer development. Microorganisms. 2019; 7 (1): 20. DOI: https://doi.org/10.3390/microorganisms7010020
26. Pietiäinen M., Liljestrand J.M., Kopra E., Pussinen P.J. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci. 2018; 126 (S1): 26–36. DOI: https://doi.org/10.1111/eos.12423 PMID: 30178551.
27. Kamer A.R., Pushalkar S., Gulivindala D., Butler T., Li Y., Annam K.R., et al. Periodontal dysbiosis associates with reduced CSF AΒ42 in cognitively normal elderly. Alzheimers Dement (Amst). 2021; 13 (1): e12172. DOI: https://doi.org/10.1002/dad2.12172
28. Latti B.R., Kalburge J.V., Birajdar S.B., Latti R.G. Evaluation of relationship between dental caries, diabetes mellitus and oral microbiota in diabetics. J Oral Maxillofac Pathol. 2018; 22 (2): 282. DOI: https://doi.org/10.4103/jomfp.JOMFP_163_16
29. Wegner N., Wait R., Sroka A., Eick S., Nguyen K.-A., Lundberg K., et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010; 62 (9): 2662–72. DOI: https://doi.org/10.1002/art.27552
30. Lim Y., Kim H.Y., An S.-J., Choi B.-K. Activation of bone marrow-derived dendritic cells and CD4 + T cell differentiation by outer membrane vesicles of periodontal pathogens. J Oral Microbiol. 2022; 14 (1): e2123550. DOI: https://doi.org/10.1080/20002297.2022.2123550
31. Slocum C., Kramer C., Genco C.A. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med. 2016; 280 (1): 114–28. DOI: https://doi.org/10.1111/joim.12476
32. Roth C.E., Craveiro R.B., Niederau C., Malyaran H., Neuss S., Jankowski J., et al. Mechanical compression by simulating orthodontic tooth movement in an in vitro model modulates phosphorylation of AKT and MAPKS via TLR4 in human periodontal ligament cells. Int J Mol Sci. 2022; 23 (15): 8062. DOI: https://doi.org/10.3390/ijms23158062
33. Popova C., Dosseva-Panova V., Panov V. Microbiology of periodontal diseases. a review. Biotechnol Biotechnol Equip. 2013; 27 (3): 3754–9. DOI: https://doi.org/10.5504/bbeq.2013.0027
34. Schön C.M., Craveiro R.B., Niederau C., Conrads G., Jahr H., Pufe T., et al. High concentrations of Porphyromonas gingivalis-LPS downregulate TLR4 and modulate phosphorylation of ERK and Akt in murine cementoblasts. Ann Anat. 2023; 246: 152023. DOI: https://doi.org/10.1016/j.aanat.2022.152023
35. Николайчук А.В., Соколова А.В., Драгунов Д.О., Тихомирова М.А., Дуванов И.А. Изменение микробиоты кишечника и риск прогрессирования саркопении // Лечебное дело. 2020. № 1. С. 18–22. DOI: https://doi.org/10.24411/2071-5315-2020-12188 [Nikolaychuk A.V., Sokolova A.V., Dragunov D.O., Tikhomirova M.A., Duvanov I.A. Changes in intestinal microbiota and the risk of sarcopenia progression. Lechebnoe delo [Medical Care]. 2020; (1): 18–22. DOI: https://doi.org/10.24411/2071-5315-2020-12188 (in Russian)]
36. Montenegro M.M., Ribeiro I.W., Kampits C., Saffi M.A., Furtado M.V., Polanczyk C.A., et al. Randomized controlled trial of the effect of periodontal treatment on cardiovascular risk biomarkers in patients with stable coronary artery disease: preliminary findings of 3 months. J Clin Periodontol. 2019; 46 (3): 321–31. DOI: https://doi.org/10.1111/jcpe.13085
37. Olsen I., Yamazaki K. Can oral bacteria affect the microbiome of the gut? J Oral Microbiol. 2019; 11 (1): 1586422. DOI: https://doi.org/10.1080/20002297.2019.1586422
38. Cotter P.D., Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev. 2003; 67 (3): 429–53. DOI: https://doi.org/10.1128/MMBR.67.3.429-453.2003
39. Kitamoto S., Nagao-Kitamoto H., Hein R., Schmidt T.M., Kamada N. The bacterial connection between the oral cavity and the gut diseases. J Dent Res. 2020; 99 (9): 1021–9. DOI: https://doi.org/10.1177/0022034520924633
40. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021; 21: 426–40. DOI: https://doi.org/10.1038/s41577-020-00488-6
41. Hu S., Mok J., Gowans M., Ong D.E., Hartono J.L., Lee J.W. Oral microbiome of Сrohn’s disease patients with and without oral manifestations. J Crohns Colitis. 2022; 16: 1628–36. DOI: https://doi.org/10.1093/ecco-jcc/jjac063
42. Zhang S., Kong C., Yang Y., Cai S., Li X., Cai G., et al. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Theranostics. 2020; 10: 11 595–606. DOI: https://doi.org/10.7150/thno.49515
43. Sun J.H., Li X.L., Yin J., Li Y.H., Hou B.X., Zhang Z. A screening method for gastric cancer by oral microbiome detection. Oncol Rep. 2018; 39: 2217–24. DOI: https://doi.org/10.3892/or.2018.6286
44. Peters B.A., Wu J., Pei Z., Yang L., Purdue M.P., Freedman N.D., et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017; 77: 6777–87. DOI: https://doi.org/10.1158/0008-5472.CAN-17-1296
45. Alazawi W., Bernabe E., Tai D., Janicki T., Kemos P., Samsuddin S., et al. Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver disease. PLoS One. 2017. Vol. 12: e185902. DOI: https://doi.org/10.1371/journal.pone.0185902
46. Gamal-AbdelNaser A., Mohammed W.S., ElHefnawi M., AbdAllah M., Elsharkawy A., Zahran F.M. The oral microbiome of treated and untreated chronic HCV infection: a preliminary study. Oral Dis. 2023; 29: 843–52. DOI: https://doi.org/10.1111/odi.14007
47. Said H.S., Suda W., Nakagome S., Chinen H., Oshima K., Kim S., et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2013; 21 (1): 15–25. DOI: https://doi.org/10.1093/dnares/dst037
48. Kaur C.P., Vadivelu J., Chandramathi S. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. J Dig Dis. 2018; 19 (5): 262–71. DOI: https://doi.org/10.1111/1751-2980.12595
49. Li C., Yu R., Ding Y. Association between Porphyromonas gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 2022; 12: 1026457. DOI: https://doi.org/10.3389/fcimb.2022.1026457
50. Stein J.M., Lammert F., Zimmer V., Granzow M., Reichert S., Schulz S., et al. Clinical periodontal and microbiologic parameters in patients with Crohn’s disease with consideration of the CARD15 genotype. J Periodontol. 2010; 81 (4): 535–45. DOI: https://doi.org/10.1902/jop.2009.090563
51. Yoneda M., Naka S., Nakano K., Wada K., Endo H., Mawatari H., et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012; 12 (1): 16. DOI: https://doi.org/10.1186/1471-230X12-16
52. Nakahara T., Hyogo H., Ono A., Nagaoki Y., Kawaoka T., Miki D., et al. Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease. J Gastroenterol. 2017; 53 (2): 269–80. DOI: https://doi.org/10.1007/s00535-017-1368-4
53. Aberg F., Helenius-Hietala J. Oral health and liver disease: bidirectional associations – a narrative review. Dent J (Basel). 2022; 21: 16. DOI: https://doi.org/10.3390/dj10020016
54. Komazaki R., Katagiri S., Takahashi H., Maekawa S., Shiba T., Takeuchi Y., et al. Periodontal pathogenic bacteria, Aggregatibacter actinomycetemcomitans affect non-alcoholic fatty liver disease by altering gut microbiota and glucose metabolism. Sci Rep. 2017; 7 (1): 13950. DOI: https://doi.org/10.1038/s41598-017-14260-9
55. Weng M.T., Chiu Y.T., Wei P.Y., Chiang C.W., Fang H.L., Wei S.C. Microbiota and gastrointestinal cancer. J Formos Med Assoc. 2019; 118 (suppl 1): S32–41. DOI: https://doi.org/10.1016/j.jfma.2019.01.002
56. Kageyama S., Takeshita T., Takeuchi K., Asakawa M., Matsumi R., Furuta M., et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019; 2: 1780. DOI: https://doi.org/10.3389/fmicb.2019.01780
57. Minarovits J. Anaerobic bacterial communities associated with oral carcinoma: intratumoral, surface-biofilm and salivary microbiota. Anaerobe. 2021; 68: 102300. DOI: https://doi.org/10.1016/j.anaerobe.2020.102300
58. Chattopadhyay I., Verma M., Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat. 2019; 18: 153303381986735. DOI: https://doi.org/10.1177/1533033819867354
59. Pignatelli P., Iezzi L., Pennese M., Raimondi P., Cichella A., Bondi D., et al. The potential of colonic tumor tissue fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers (Basel). 2021; 13 (5): 1032. DOI: https://doi.org/10.3390/cancers13051032
60. Aymeric L., Donnadieu F., Mulet C., du Merle L., Nigro G., Saffarian A., et al. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci USA. 2017; 115 (2): E283–91. DOI: https://doi.org/10.1073/pnas.1715112115
61. Liljestrand J.M., Paju S, Pietiäinen M., Buhlin K., Persson G.R., Nieminen M.S., et al. Immunologic burden links periodontitis to acute coronary syndrome. Atherosclerosis. 2018; 268: 177–84. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.12.007
62. Noble J.M., Borrell L.N., Papapanou P.N., Elkind M.S., Scarmeas N., Wright C.B. Periodontitis is associated with cognitive impairment among older adults: analysis of Nhanes-III. Neurol Neurosurg Psychiatry. 2009; 80 (11): 1206–11. DOI: https://doi.org/10.1136/jnnp.2009.174029
63. Eriksen L., Grønbæk M., Helge J.W., Tolstrup J.S., Curtis T. The Danish Health Examination Survey 2007–2008 (DANHES 2007–2008). Scand J Public Health. 2011; 39 (2): 203–11. DOI: https://doi.org/10.1177/1403494810393557
64. Talha K.M., Baddour L.M., Thornhill M.H., Arshad V., Tariq W., Tleyjeh I.M., et al. Escalating incidence of infective endocarditis in Europe in the 21st century. Open Heart. 2021; 8 (2): e001846. DOI: https://doi.org/10.1136/openhrt-2021-001846
65. Del Giudice C., Vaia E, Liccardo D., Marzano F., Valletta A., Spagnuolo G., et al. Infective endocarditis: a focus on oral microbiota. Microorganisms. 2021; 9 (6): 1218. DOI: https://doi.org/10.3390/microorganisms9061218
66. Liesenborghs L., Meyers S., Vanassche T., Verhamme P. Coagulation: at the heart of infective endocarditis. J Thromb Haemost. 2020; 18: 995–1008. DOI: https://doi.org/10.1111/jth.14736
67. Herzberg M.C., Nobbs A., Tao L., Kilic A., Beckman E., Khammanivong A., et al. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J Periodontol. 2005; 76: 2101–5. DOI: https://doi.org/10.1902/jop.2005.76.11-S.2101
68. Chidambar C.K., Shankar S.M., Raghu P., Gururaj S.B., Bushan K.S. Detection of Enterococcus faecalis in subgingival biofilms of healthy, gingivitis, and chronic periodontitis subjects. J Indian Soc Periodontol. 2019; 23 (5): 416–8. DOI: https://doi.org/10.4103/jisp.jisp_44_19
69. Najafi K., Ganbarov K., Gholizadeh P., Tanomand A., Rezaee M.A., Mahmood S.S., et al. Oral cavity infection by Enterococcus faecalis: virulence factors and pathogenesis. Rev Med Microbiol. 2020; 31 (2): 51–60. DOI: https://doi.org/10.1097/MRM.0000000000000168
70. Dahl A., Miro J.M., Bruun N.E. Enterococcus faecalis bacteremia: please do the echo. Aging (Albany NY). 2019; 11: 10 786–7. DOI: https://doi.org/10.18632/aging.102619
71. Fu Y., Maaβ S., du Teil Espina M., Wolters A.H., Gong Y., de Jong A., et al. Connections between exoproteome heterogeneity and virulence in the oral pathogen Aggregatibacter actinomycetemcomitans. mSystems. 2022; 7 (3): e0025422. DOI: https://doi.org/10.1128/msystems.00254-22
72. Radwan-Oczko M., Jaworski A., Duś I., Plonek T., Szulc M., Kustrzycki W., et al. Porphyromonas gingivalis in periodontal pockets and heart valves. Virulence. 2014; 5 (4): 575–80. DOI: https://doi.org/10.4161/viru.28657
73. Longenecker C.T., Hoit B.D. Imaging atherosclerosis in HIV: Carotid intima-media thickness and beyond. Transl Res. 2012; 159 (3): 127–39. DOI: https://doi.org/10.1016/j.trsl.2011.10.007
74. Sanz M., Marco del Castillo A., Jepsen S., Gonzalez-Juanatey J.R., D’Aiuto F., Bouchard P., et al. Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol. 2020; 47 (3): 268–88. DOI: https://doi.org/10.1111/jcpe.13189
75. Vieira R.W. Cardiovascular and periodontal diseases. Rev Bras Cir Cardiovasc. 2014; 29 (1): VII–IX. DOI: https://doi.org/10.5935/1678-9741.20140003
76. Schenkein H.A., Papapanou P.N., Genco R., Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000. 2020; 83 (1): 90–106. DOI: https://doi.org/10.1111/prd.12304
77. Ruan Q., Guan P., Qi W., Li J., Xi M., Xiao L., et al. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol. 2023; 14: 1103592. DOI: https://doi.org/10.3389/fimmu.2023.1103592
78. Zou Y., Huang Y., Liu S., Yang J., Zheng W., Deng Y., et al. Periodontopathic microbiota and atherosclerosis: roles of TLR-mediated inflammation response. Oxid Med Cell Longev. 2022; 2022: 9611362. DOI: https://doi.org/10.1155/2022/9611362
79. Fentoğlu Ö., Tözüm Bulut M., Doğan B., Kırzıoğlu F.Y., Kemer Doğan E.S. Is the relationship between periodontitis and hyperlipidemia mediated by lipoprotein-associated inflammatory mediators? Periodontal Implant Sci. 2020; 50 (3): 135. DOI: https://doi.org/10.5051/jpis.2020.50.3.135
80. Fentoglu O., Bozkurt F.Y. The bi-directional relationship between periodontal disease and hyperlipidemia. Eur J Dent. 2008; 2 (2): 142–6.
81. Larvin H., Kang J., Aggarwal V.R., Pavitt S., Wu J. Risk of incident cardiovascular disease in people with periodontal disease: a systematic review and meta-analysis. Clin Exp Dent Res. 2021; 7 (1): 109–122. DOI: https://doi.org/10.1002/cre2.336
82. Isola G., Polizzi A., Alibrandi A., Williams R.C., Leonardi R. Independent impact of periodontitis and cardiovascular disease on elevated soluble urokinase-type plasminogen activator receptor (supar) levels. J Periodontol. 2020; 92 (6): 896–906. DOI: https://doi.org/10.1002/JPER.20-0242
83. Herrera D., Molina A., Buhlin K., Klinge B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000. 2020; 83 (1): 66–89. DOI: https://doi.org/10.1111/prd.12302
84. Velissaris D., Zareifopoulos N., Koniari I., Karamouzos V., Bousis D., Gerakaris A., et al. Soluble urokinase plasminogen activator receptor as a diagnostic and prognostic biomarker in cardiac disease. J Clin Med Res. 2021; 13 (1): 133–42. DOI: https://doi.org/10.14740/jocmr4459
85. Fang Y., Fan C., Xie H. Effect of Helicobacter pylori infection on the risk of acute coronary syndrome: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98: 18348. DOI: https://doi.org/10.1097/MD.0000000000018348
86. Bloemenkamp D.G., Mali W.P., Tanis B.C., Rosendaal F.R., van den Bosch M.A., Kemmeren J.M., et al. Chlamydia pneumoniae, Helicobacter pylori and cytomegalovirus infections and the risk of peripheral arterial disease in young women. Atherosclerosis. 2002; 163: 149–56. DOI: https://doi.org/10.1016/s0021-9150(01)00761-4
87. Nguyen A.T., Akhter R., Garde S., Scott C., Twigg S.M., Colagiuri S., et al. The association of periodontal disease with the complications of diabetes mellitus. a systematic review. Diabetes Res Clin Pract. 2020; 165: 108244. DOI: https://doi.org/10.1016/j.diabres.2020.108244
88. Matsha T.E., Prince Y., Davids S., Chikte U., Erasmus R.T., Kengne A.P., et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res. 2020; 99 (6): 658–65. DOI: https://doi.org/10.1177/0022034520913818
89. Isola G., Lo Giudice A., Polizzi A., Alibrandi A., Murabito P., Indelicato F. Identification of the different salivary interleukin-6 profiles in patients with periodontitis: a cross-sectional study. Arch Oral Biol. 2021; 122: 104997. DOI: https://doi.org/10.1016/j.archoralbio.2020.104997
90. Mattera M.S., Chiba F.Y., Lopes F.L., Tsosura T.V., Peres M.A., Brito V.G., et al. Effect of maternal periodontitis on glut4 and inflammatory pathway in adult offspring. J Periodontol. 2019; 90 (8): 884–93. DOI: https://doi.org/10.1002/JPER.18-0568
91. Bhat U.G., Ilievski V., Unterman T.G., Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol. 2014; 85 (11): 1629–36. DOI: https://doi.org/10.1902/jop.2014.140070
92. Chen S., Lin G., You X., Lei L., Li Y., Lin M., et al. Hyperlipidemia causes changes in inflammatory responses to periodontal pathogen challenge: implications in acute and chronic infections. Arch Oral Biol. 2014; 59 (10): 1075–84. DOI: https://doi.org/10.1016/j.archoralbio.2014.06.004
93. He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017; 44 (2): 532–53. DOI: https://doi.org/10.1159/000485089
94. Yaribeygi H., Sathyapalan T., Atkin S.L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; 9: 8609213. DOI: https://doi.org/10.1155/2020/8609213
95. Prame Kumar K., Nicholls A.J., Wong C.H. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018; 371 (3): 551–65. DOI: https://doi.org/10.1007/s00441-017-2753-2
96. Grover H.S., Luthra S. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol. 2013; 17: 292–301. DOI: https://doi.org/10.4103/0972-124X.115642
97. Kuraji R., Ito H., Fujita M., Ishiguro H., Hashimoto S., Numabe Y. Porphyromonas gingivalis induced periodontitis exacerbates progression of non-alcoholic steatohepatitis in rats. Clin Exp Dent Res. 2016; 28 (3): 216–25. DOI: https://doi.org/10.1002/cre2.41
98. Мартинчик А.Н., Лайкам К.Э., Козырева Н.А., Кешабянц Э.Э., Михайлов НА., Батурин А.К., Смирнова Е.А. Распространение ожирения в различных социально-демографических группах населения России // Вопросы питания. 2021. Т. 90, № 3. С. 67–76. DOI: https://doi.org/10.33029/0042-8833-2021-90-3-67-76 [Martinchik A.N., Laykam K.E., Kozyreva N.A., Keshabyants E.E., Mikhaylov N.A., Baturin A.K., Smirnova E.A. The prevalence of obesity in various socio-demographic groups of the population of Russia. Voprosy pitaniia [Problems of Nutrition]. 2021; 90 (3): 67–76. DOI: https://doi.org/10.33029/0042-8833-2021-90-3-67-76 (in Russian)]
99. Lin X., Li H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021; 12: 706978. DOI: https://doi.org/10.3389/fendo.2021.706978
100. Kirichenko T.V., Markina Y.V., Bogatyreva A.I., Tolstik T.V., Varaeva Y.R., Starodubova A.V. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci. 2022; 23 (23): 14982. DOI: https://doi.org/10.3390/ijms232314982
101. Dahiya P., Kamal R., Gupta R. Obesity, periodontal and general health: relationship and management. Indian J Endocrinol Metab. 2012; 16 (1): 88. DOI: https://doi.org/10.4103/2230-8210.91200
102. Jia R., Zhang Y., Wang Z., Hu B., Wang Z., Qiao H. Association between lipid metabolism and periodontitis in obese patients: a cross-sectional study. BMC Endocr Disord. 2023; 25: 119. DOI: https://doi.org/10.1186/s12902-023-01366-7
103. Hu X., Zhang Q., Zhang M., Yang X., Zeng T.S., Zhang J.Y., et al. Tannerella forsythia and coating color on the tongue dorsum, and fatty food liking associate with fat accumulation and insulin resistance in adult catch-up fat. Int J Obes (Lond). 2018; 42: 121–8. DOI: https://doi.org/10.1038/ijo.2017.191
104. Zheng F., Su L., Zhang N., Liu L., Gu J., Du W. Porphyromonasgingivali-derived lipopolysaccharide inhibits brown adipocyte differentiation via lncrna-bate10. Exp Ther Med. 2022; 24 (6): 718. DOI: https://doi.org/10.3892/etm.2022.11654
105. Thouvenot K., Turpin T., Taïlé J., Clément K., Meilhac O., Gonthier M.-P. Links between insulin resistance and periodontal bacteria: Insights on molecular players and therapeutic potential of polyphenols. Biomolecules. 2022; 12 (3): 378. DOI: https://doi.org/10.3390/biom12030378
106. de Andrade D.R., Silva P.A., Colombo A.P., Silva-Boghossian C.M. Subgingival microbiota in overweight and obese young adults with no destructive periodontal disease. J Periodontol. 2021; 92 (10): 1410–9. DOI: https://doi.org/10.1002/JPER.20-0187
107. Sales-Peres S.H.C., Sales-Peres M.C., Ceneviva R., Bernabé E. Weight loss after bariatric surgery and periodontal changes: a 12-month prospective study. Surg Obes Relat Dis. 2017; 13 (4): 637–42. DOI: https://doi.org/10.1016/j.soard.2016.08.007
108. Nonaka S., Kadowaki T., Nakanishi H. Secreted gingipains from Porphyromonas gingivalis increase permeability in human cerebral microvascular endothelial cells through intracellular degradation of tight junction proteins. Neurochem Int. 2022; 154: 105282. DOI: https://doi.org/10.1016/j.neuint.2022.105282
109. Ball J., Darby I. Mental health and periodontal and peri-implant diseases. Periodontol 2000. 2022; 90 (1): 106–24. DOI: https://doi.org/10.1111/prd.12452
110. Ding Y., Ren J., Yu H., Yu W., Zhou Y. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. Immun Ageing. 2018; 15 (1): 6. DOI: https://doi.org/10.1186/s12979-017-0110-7
111. Holmer J., Eriksdotter M., Schultzberg M., Pussinen P.J., Buhlin K. Association between periodontitis and risk of Alzheimer’s disease, mild cognitive impairment and subjective cognitive decline: a case-control study. J Clin Periodontol. 2018; 45 (11): 1287–98. DOI: https://doi.org/10.1111/jcpe.13016
112. Ishida N., Ishihara Y., Ishida K., Tada H., Funaki-Kato Y., Hagiwara M., et al. Periodontitis induced by bacterial infection exacerbates features of alzheimer’s disease in Transgenic Mice. NPJ Aging Mech Dis. 2017; 3 (1): 15. DOI: https://doi.org/10.1038/s41514-017-0015-x
113. Zhang J., Yu C., Zhang X., Chen H., Dong J., Lu W., et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018; 15 (1): 37. DOI: https://doi.org/10.1186/s12974-017-1052-x
114. Hashioka S., Inoue K., Miyaoka T., Hayashida M., Wake R., OhNishi A., et al. The possible causal link of periodontitis to neuropsychiatric disorders: more than psychosocial mechanisms. Int J Mol Sci. 2019; 20 (15): 3723. DOI: https://doi.org/10.3390/ijms20153723
115. Ide M., Harris M., Stevens A., Sussams R., Hopkins V., Culliford D., et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One. 2016; 11 (3): e0151081. DOI: https://doi.org/10.1371/journal.pone.0151081
116. Chen C.K., Wu Y.T., Chang Y.C. Periodontal inflammatory disease is associated with the risk of Parkinson’s disease: a population-based retrospective matched-cohort study. PeerJ. 2017; 5: e3647. DOI: https://doi.org/10.7717/peerj.3647
117. Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019; 5 (1): eaau3333. DOI: https://doi.org/10.1126/sciadv.aau3333
118. Wu L., Su X., Tang Z., Jian L., Zhu H., Cheng X., et al. Treponema denticola induces neuronal apoptosis by promoting amyloid-β accumulation in mice. Pathogens. 2022; 11 (10): 1150. DOI: https://doi.org/10.3390/pathogens11101150
119. Da D., Zhao Q., Zhang H., Wu W., Zeng X., Liang X., et al. Oral microbiome in older adults with mild cognitive impairment. J Oral Microbiol. 2023; 15 (1): 2173544. DOI: https://doi.org/10.1080/20002297.2023.2173544
120. Chen C.K., Huang J.Y., Wu Y.T., Chang Y.C. Dental scaling decreases the risk of Parkinson’s disease: a nationwide population-based nested case-control study. Int J Environ Res Public Health. 2018; 15 (8): 1587. DOI: https://doi.org/10.3390/ijerph15081587
121. Martimbianco A.L.C., Prosdocimi F.C., Anauate-Netto C., Dos Santos E.M., Mendes G.D., Fragoso Y.D. Evidence-based recommendations for the oral health of patients with Parkinson’s disease. Neurol Ther. 2021; 10: 391–400. DOI: https://doi.org/10.1007/s40120-021-00237-4
122. Leira Y., Seoane J., Blanco M., Rodríguez-Yáñez M., Takkouche B., Blanco J., et al. Association between periodontitis and ischemic stroke: a systematic review and meta-analysis. Eur J Epidemiol. 2016; 32 (1): 43–53. DOI: https://doi.org/10.1007/s10654-016-0170-6
123. Chi L., Cheng X., He X., Sun J., Liang F., Pei Z., et al. Increased cortical infarction and neuroinflammation in ischemic stroke mice with experimental periodontitis. Neuroreport. 2019; 30 (6): 428–33. DOI: https://doi.org/10.1097/WNR.0000000000001220
124. Lee H.R., Jun H.K., Choi B.K. Tannerella forsythia BSPA increases the risk factors for atherosclerosis in apoe −/− mice. Oral Dis. 2014; 20 (8): 803–8. DOI: https://doi.org/10.1111/odi.12214
125. Velsko I.M., Harrison P., Chalmers N., Barb J., Huang H., Aukhil I., et al. Grade C molar-incisor pattern periodontitis subgingival microbial profile before and after treatment. J Oral Microbiol. 2020; 13 (12): 1814674. DOI: https://doi.org/10.1080/20002297.2020.1814674
126. Gandhi K.K., Pavaskar R., Cappetta E.G., Drew H.J. Effectiveness of adjunctive use of low-level laser therapy and photodynamic therapy after scaling and root planing in patients with chronic periodontitis. Int J Periodontics Restorative Dent. 2019; 39 (6): 837–43. DOI: https://doi.org/10.11607/prd.4252
127. Kabwe M., Brown T.L., Dashper S., Speirs L., Ku H., Petrovski S., et al. Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms. Sci Rep. 2019; 24 (9): 9107. DOI: https://doi.org/10.1038/s41598-019-45549-6
128. Martinon P., Fraticelli L., Giboreau A., Dussart C., Bourgeois D., Carrouel F. Nutrition as a key modifiable factor for periodontitis and main chronic diseases. J Clin Med. 2021; 10: 197. DOI: https://doi.org/10.3390/jcm10020197
129. Laiola M., De Filippis F., Vitaglione P., Ercolini D. A Mediterranean diet intervention reduces the levels of salivary periodontopathogenic bacteria in overweight and obese subjects. Appl Environ Microbiol. 2020; 86 (12): e00777-20. DOI: https://doi.org/10.1128/AEM.00777-20