Effect of micro- and nanoplastics as food contaminants on the immune system

Abstract

Currently, due to the increase in the distribution and accumulation of microplastics and nanoplastics (MP and NP) in the environment, their negative impact on human health has become a global problem.

The purpose of this research was to analyze the results of the studies on the effect of MPs and NPs on the body and evaluate their impact as pathogenetic factors of immune status disorders in vitro and in vivo.

Material and methods. The search for literary sources was carried out in the PubMed Internet resource, and the Scopus and Web of Science databases were also used. The Springer and Elsevier websites were used to access the full text of the articles.

Results. MP and NP enter the human body through ingestion of food, water, as well as through inhalation and contact with the skin. The results of the studies indicate that MP and NP particles, entering the human body, can move along with the blood and accumulate in various organs: the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and brain, i.e., to overcome the blood-brain barrier. The immune system is the main regulatory and protective system of the body, playing a major role in the recognition and destruction of foreign antigens of a viral, bacterial and chemical nature. Innate immunity is the first line of defense against pathogens. Macrophages, monocytes, natural killer cells (NK cells), and leukocytes (neutrophils) phagocytize antigens and present them to adaptive immune cells. It has been established that the damaging effect of MPs and NPs on immunity (immunotoxicity) is mainly due to the presence of oxidative stress with the formation of reactive oxygen species (ROS) and damage-associated molecular patterns (DAMP). The toxicity of MPs and NPs is realized by reducing the expression of the Nrf2 factor (a redox-sensitive transcription factor that regulates antioxidant protection) and the activation of p38 mitogen-activated protein kinases. In addition, it was found that the inflammatory process after exposure to MP and NPs is mediated by the expression of pro-inflammatory cytokines: IFN-γ, TNF-α, IL-1β, IL-6 and IL-33 and a decrease in the expression of cytokines: IL-4, IL-5, IL-10, IL-33 and TGF-β1, which leads to activation of the signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) and cGas/STING pathways.

Conclusion. Analysis of the data of MP and NP effect on the immune system indicates the presence of aseptic chronic inflammation, which requires studying the causes and mechanisms of the development of inflammatory processes.

Keywords:microplastics; nanoplastics; immunity; macrophages; lymphocytes; NK-cells; cytokines

Funding. The research was carried out at the expense of the subsidy for the implementation of the scientific and research studies (topic No. FGMF-2023-0005).

Conflict of interest. The authors declare no conflict of interest.

Contribution. All authors made a significant contribution to the search and analysis of literature data and preparation of the article, read and approved the final version of the article before publication.

For citation: Trushina E.N., Riger N.A., Mustafina O.K., Timonin A.N. Effect of micro- and nanoplastics as food contaminants on the immune system. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (5): 6–15. DOI: https://doi.org/10.33029/0042-8833-2023-92-5-6-15 (in Russian)

References

1. Lehner R., Weder C., Petri-Fink A., Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019; 53 (4): 1748–65. DOI: https://doi.org/10.1021/acs.est.8b05512

2. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ. 2020; 702: 134455. DOI: https://doi.org/10.1016/j.scitotenv.2019.134455

3. Rochman C.M., Brookson C., Bikker J., Djuric N., Earn A., Bucci K., et al. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem. 2019; 38 (4): 703–11. DOI: https://doi.org/10.1002/etc.4371

4. Lebreton L., Slat B., Ferrari F., Sainte-Rose B., Aitken J., Marthouse R., et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep. 2018; 8 (1): 4666. DOI: https://doi.org/10.1038/s41598-018-22939-w

5. Amobonye A., Bhagwat P., Raveendran S., Singh S., Pillai S. Environmental impacts of microplastics and nanoplastics: a current overview. Front Microbiol. 2021; 12: 768297. DOI: https://doi.org/10.3389/fmicb.2021.768297

6. Gigault J., El Hadri H., Nguyen B., Grassl B., Rowenczyk L., Tufenkji N., et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol. 2021; 16 (5): 501–7. DOI: https://doi.org/10.1038/s41565-021-00886-4

7. Toussaint B., Raffael B., Angers-Loustau A., Gilliland D., Kestens V., Petrillo M., et al. Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019; 36 (5): 639–73. DOI: https://doi.org/10.3389/fmicb.2021.768297

8. Allan J., Belz S., Hoeveler A., Hugas M., Okuda H., Patri A., et al. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol. 2021; 122 (8): 104885. DOI: https://doi.org/10.1016/j.yrtph.2021.104885

9. Xu B., Liu F., Cryder Z., Huang D., Lu Z., He Y., et al. Microplastics in the soil environment: occurrence, risks, interactions and fate – a review. Crit Rev Environ Sci Technol. 2020; 50 (21): 2175–222. DOI: https://doi.org/10.1080/10643389.2019.1694822

10. Wang J., Liu X., Li Y., Powell T., Wang X., Wang G., et al. Microplastics as contaminants in the soil environment: a mini-review. Sci Total Environ. 2019; 691: 848–57. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.209

11. Corradini F., Meza P., Eguiluz R., Casado F., Huerta-Lwanga E., Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ. 2019; 671: 411–20. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.368

12. Alimba C.G, Faggio C. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol. 2019; 68: 61–74. DOI: https://doi.org/10.1016/j.etap.2019.03.001

13. Peeken I., Primpke S., Beyer B., Gütermann J., Katlein C., Krumpen T., et al. Arctic Sea ice is an important temporal sink and means of transport for microplastic. Nat Commun. 2018; 9 (1): 1505. DOI: https://doi.org/10.1038/s41467-018-03825-5

14. Schwarz A.E., Ligthart T.N., Boukris E., van Harmelen T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Mar Pollut Bull. 2019; 143 (1–2): 92–100. DOI: https://doi.org/10.1016/j.marpolbul.2019.04.029

15. Lambert S., Wagner M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Wagner M., Lambert S. (eds). Freshwater Microplastics. The Handbook of Environmental Chemistry. Vol. 58. Cham: Springer, 2018: 1–23. DOI: https://doi.org/10.1007/978-3-319-61615-5_1

16. Koelmans A.A., Mohamed Nor N.H., Hermsen E., Kooi M., Mintenig S.M., De France J. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 2019; 155; 410–22. DOI: https://doi.org/10.1016/j.watres.2019.02.054

17. Danopoulos E., Twiddy M., Rotchell J.M. Microplastic contamination of drinking water: a systematic review. PLoS One. 2020; 15 (7): 0236838. DOI: https://doi.org/10.1371/journal.pone.0236838

18. Smith M., Love D.C., Rochman C.M., Neff R.A. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2018; 5 (3): 375–86. DOI: https://doi.org/10.1007/s40572-018-0206-z

19. Hantoro I., Löhr A.J., Van Belleghem F.G.A.J., Widianarko B., Ragas A.M.J. Microplastics in coastal areas and seafood: implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019; 36 (5): 674–711. DOI: https://doi.org/10.1080/19440049.2019.1585581

20. Liebezeit G., Liebezeit E. Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013; 30 (12): 2136–40. DOI: https://doi.org/10.1080/19440049.2013.843025

21. Gündoğdu S. Contamination of table salts from Turkey with microplastics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018; 35 (5): 1006–14. DOI: https://doi.org/10.1080/19440049.2018.1447694

22. Liebezeit G., Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014; 31 (9): 1574–78. DOI: https://doi.org/10.1080/19440049.2014.945099

23. Chen G., Feng Q., Wang J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ. 2020; 703: 135504. DOI: https://doi.org/10.1016/j.scitotenv.2019.135504

24. Wright S.L., Ulke J., Font A., Chan K.L.A., Kelly F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int. 2020; 136: 105411. DOI: https://doi.org/10.1016/j.envint.2019.105411

25. Hirt N., Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol. 2020; 17 (1): 57. DOI: https://doi.org/10.1186/s12989-020-00387-7

26. Leslie H.A., van Velzen M.J.M., Brandsma S.H., Vethaak A.D., Garcia-Vallejo J.J., Lamoree M.H. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022; 163: 107199. DOI: https://doi.org/10.1016/j.envint.2022.107199

27. Khan A., Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26 (2): 106061. DOI: https://doi.org/10.1016/j.isci.2023.106061

28. Liu S., Shi J., Wang J., Dai Y., Li H., Li J., et al. Interactions between microplastics and heavy metals in aquatic environments: a review. Front Microbiol. 2021; 12: 652520. DOI: https://doi.org/10.3389/fmicb.2021.652520

29. Prüst M., Meijer J., Westerink R.H.S. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol. 2020; 17: 1–16. DOI: https://doi.org/10.1186/s12989-020-00358-y

30. Zhang P., Wang Y., Zhao X., Ji Y., Mei R., Fu L., et al. Surface-enhanced Raman scattering labeled nanoplastic models for reliable bio-nano interaction investigations. J Hazard Mater. 2022; 425: 127959. DOI: https://doi.org/10.1016/j.jhazmat.2021.127959

31. Shen R., Yang K., Cheng X., Guo C., Xing X., Sun H., et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environ Pollut. 2022; 300: 118986. DOI: https://doi.org/10.1016/j.envpol.2022.118986

32. Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008; 105: 14 265–70. DOI: https://doi.org/10.1073/pnas.0805135105

33. Yang W., Jannatun N., Zeng Y., Liu T., Zhang G., Chen C., Li Y. Impacts of microplastics on immunity. Front Toxicol. 2022; 4: 956885. DOI: https://doi.org/10.3389/ftox. 2022.956885

34. Abihssira-Garcia I.S., Park Y., Kiron V., Olsvik P.A. Fluorescent microplastic uptake by immune cells of atlantic salmon (Salmo salar L.). Front Environ. 2020; 8: 233. DOI: https://doi.org/10.3389/fenvs.2020.560206

35. Yee M.S.L., Hii L.W., Looi C.K., Lim W.M., Wong S.F., Kok Y.Y., et al. Impact of microplastics and nanoplastics on human health. Nanomaterials. 2021; 11: 496. DOI: https://doi.org/10.3390/nano11020496

36. Mani I., Pandey K.N. Emerging concepts of receptor endocytosis and concurrent intracellular signaling: mechanisms of guanylyl cyclase/natriuretic peptide receptor-A activation and trafficking. Cell Signal. 2019; 60: 17–30. DOI: https://doi.org/10.1016/j.cellsig.2019.03.022

37. Xu D., Ma Y., Han X., Chen Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater. 2021; 417: 126092. DOI: https://doi.org/10.1016/j.jhazmat.2021.126092

38. Powell J.J, Faria N., Thomas-McKay E., Pele L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010; 34: J226–33. DOI: https://doi.org/10.1016/j.jaut.2009.11.006

39. Lu K., Lai K.P., Stoeger T., Ji S., Lin Z., Lin X., et al. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. J Hazard Mater. 2021; 416: 126069. DOI: https://doi.org/10.1016/j.jhazmat.2021.126069

40. Zhang Q., Zhao Y., Du F., Cai H., Wang G., Shi H. Microplastic fallout in different indoor environments. Environ Sci Technol. 2020; 54: 6530–9. DOI: https://doi.org/10.1021/acs.est.0c00087

41. Xu M., Halimu G., Zhang Q., Song Y., Fu X., Li Y., et al. Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019; 694: 133794. DOI: https://doi.org/10.1016/j.scitotenv.2019.133794

42. Ensign L.M., Cone R., Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012; 64: 557–70. DOI: https://doi.org/10.1016/j.addr.2011.12.009

43. Coméra C., Cartier C., Gaultier E., Catrice O., Panouille Q., Hamdi S.E., et al. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice. Part Fibre Toxicol. 2020; 17: 1–15. DOI: https://doi.org/10.1186/s12989-020-00357-z

44. Smith M.W., Thomas N.W., Jenkins P.G., Miller N.G., Cremaschi D., Porta C. Selective transport of microparticles across Peyer’s patch follicle-associated M cells from mice and rats. Exp Physiol. 1995; 80: 735–43. DOI: https://doi.org/10.1113/expphysiol.1995.sp003882

45. Feng X., Zhang Y., Zhang C., Lai X., Zhang Y., Wu J., et al. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol. 2020; 17: 53. DOI: https://doi.org/10.1186/s12989-020-00372-0

46. Galloway T.S. Micro-and nano-plastics and human health. In: Marine Anthropogenic Litter. 1st ed. Cham: Springer, 2015: 343–66. DOI: https://doi.org/10.1007/978-3-319-16510-3_13

47. Deng Y.F., Zhang Y., Lemos B., Ren H.Q. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017; 7: 46687. DOI: https://doi.org/10.1038/srep46687

48. Yong C.Q.Y., Valiyaveetill S., Tang B.L. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health. 2020; 17: E1509. DOI: https://doi.org/10.3390/ijerph17051509

49. Carr K.E., Smyth S.H., McCullough M.T., Morris J.F., Moyes S.M. Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem. 2012; 46: 185–252. DOI: https://doi.org/10.1016/j.proghi.2011.11.001

50. Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F.A. Detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020; 17 (4): 1212. DOI: https://doi.org/10.3390/ijerph17041212 PMID: 32069998.

51. Mckechnie J.L., Blish C.A. The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe. 2020; 27: 863–9. DOI: https://doi.org/10.1016/j.chom.2020.05.009

52. Zhang G.F., Luo W.H., Yang W.J., Li S., Li D.J., Zeng Y.Q., et al. The importance of IL-1 family cytokines in nanoimmunosafety and Nanotoxicology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022; 14 (6): e1850. DOI: https://doi.org/10.1002/wnan.1850

53. Boraschi D., Italiani P. Innate immune memory: time for adopting a correct terminology. Front Immunol. 2018; 9: 799. DOI: https://doi.org/10.3389/fimmu.2018.00799

54. Limonta G., Mancia A., Benkhalqui A., Bertolucci C., Abelli L., Fossi M.C., et al. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci Rep. 2019; 9: 15775. DOI: https://doi.org/10.1038/s41598-019-52292-5

55. Merkley S.D., Moss H.C., Goodfellow S.M., Ling C.L., Meyer-Hagen J.L., Weaver J., et al. Polystyrene microplastics induce an immunemetabolic active state in macrophages. Cell Biol Toxicol. 2021; 38 (1): 31–41. DOI: https://doi.org/10.1007/s10565-021-09616-x

56. Zou W., Xia M., Jiang K., Cao Z., Zhang X., Hu X. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis. Environ Sci Technol. 2020; 54 (21): 13 888–98. DOI: https://doi.org/10.1021/acs.est.0c05399

57. Yunna C., Mengru H., Lei W., Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020; 877: 173090. DOI: https://doi.org/10.1016/j.ejphar.2020.173090

58. Zhao L., Shi W., Hu F., Song X., Cheng Z., Zhou J. Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. Ecotoxicol Environ Saf. 2021; 227: 112882. DOI: https://doi.org/10.1016/j.ecoenv.2021.112882

59. Huangfu N., Zheng W., Xu Z., Wang S., Wang Y., Cheng J., et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis. Int Immunopharmacol. 2020; 83: 106432. DOI: https://doi.org/10.1016/j.intimp.2020.106432

60. Hayyan M., Hashim M.A., AlNashef I.M. Superoxide ion: generation and chemical implications. Chem Rev. 2016; 116: 3029–85. DOI: https://doi.org/10.1021/acs.chemrev.5b00407

61. Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007; 87: 245–313. DOI: https://doi.org/10.1152/physrev.00044.2005

62. Gong T., Liu L., Jiang W., Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020; 20: 95–112. DOI: https://doi.org/10.1038/s41577-019-0215-7

63. Li S., Shi M., Wang Y., Xiao Y., Cai D., Xiao F. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects. J Hazard Mater. 2021; 402: 123933. DOI: https://doi.org/10.1016/j.jhazmat.2020.123933

64. Li S., Wang Q., Yu H., Yang L., Sun Y., Xu N., et al. Polystyrene microplastics induce blood-testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. Environ Sci Pollut Res Int. 2021; 28: 47 921–31. DOI: https://doi.org/10.1007/s11356-021-13911-9

65. Liu S., Li H., Wang J., Wu B., Guo X. Polystyrene microplastics aggravate inflammatory damage in mice with intestinal immune imbalance. Sci Total Environ. 2022; 833: 155198. DOI: https://doi.org/10.1016/j.scitotenv.2022.155198

66. Li B., Ding Y., Cheng X., Sheng D., Xu Z., Rong Q., et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020; 244: 125492. DOI: https://doi.org/10.1016/j.chemosphere.2019.125492

67. Lu L, Wan Z, Luo T., Fu Z., Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018; 631–632: 449–58. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.051

68. Jin Y., Lu L., Tu W., Luo T., Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019; 649: 308–17. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.353

69. Deng Y., Yan Z., Shen R., Wang M., Huang Y., Ren H., et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ Int. 2020; 143: 105916. DOI: https://doi.org/10.1016/j.envint.2020.105916

70. Mancia A., Chenet T., Bono G., Geraci M.L., Vaccaro C., Munari C., et al. Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula). Mar Environ Res. 2020; 155: 104876. DOI: https://doi.org/10.1016/j.marenvres.2020.104876

71. Park E.J., Han J.S., Park E.J., Seong E., Lee G.H., Kim D.W., et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol Lett. 2020; 324: 75–85. DOI: https://doi.org/10.1016/j.toxlet.2020.01.008

72. Hwang J., Choi D., Han S., Choi J., Honga J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ. 2019; 684: 657–69. DOI: https://doi.org/10.1016/j.scitotenv.2019.05.071

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»