To the content
1 . 2024

The role of microbiota and flavonoids in maintaining the balance of helper and regulatory T-lymphocytes associated with the intestinal immune barrier

Abstract

The gastrointestinal tract is a barrier, represented by dynamic and mutually regulating components (microbial, chemical, physical and immune) for the selective penetration of luminal contents into the internal environment. From the point of view of immunologists, even in a physiological condition, the epithelium of the intestinal wall is in a state of mild inflammation, which is explained by the constant invasion of antigens (food, microbial) and, in turn, the constant readiness of the immune system to respond.

The purpose of this review was to analyze information about the formation of microbial and immunological barriers, immunological tolerance to microbiota and the possible role of flavonoids in this.

Material and methods. The literature search was carried out using PubMed, ResearchGate, Elibrary databases mainly for the last 10 years, using the following keywords: flavonoid, gut microbiome/microbiota, Th17, Treg, RORγt, immunity, segmented filamentous bacteria.

Results. During the immune response, a significant role in maintaining the intestinal barrier function is assigned to helper T lymphocytes type 17 (Th17). The intestinal microbiome is a key element in the formation of the immune barrier. Th17 differentiation in the intestine is fully triggered by commensals (apparently, the main role belongs to segmented filamentous bacteria) after weaning and the start of complementary feeding. Pro-inflammatory Th17 effectors in the gut are controlled by anti-inflammatory regulatory T-cells (Treg). In recent years, it has been established that despite the opposing functions of regulatory cells and effector Th17 cells, their differentiation is similar and is characterized by the expression of the common transcription factor RORγt. The main part of the peripheral regulatory lymphocytes of the intestine is a population that stably expresses not only FOXP3, but also RORγt. Flavonoids, which are plant secondary metabolites of the polyphenolic structure, are able to inhibit intracellular kinases and, as a result, influence the activation and implementation of effector functions of immunocompetent cells. Some flavonoids promote RORγt expression and appear to be able to reprogram the effector phenotype of Th17 cells, reducing their pathogenicity.

Conclusion. Understanding the interactions between the microbiota, immune cells, and factors involved in their regulation, which are critical for the maintenance of tolerance, may facilitate progress in the prevention and therapeutic approaches to treat immunoinflammatory and autoimmune diseases.

Keywords:T-helper 17 lymphocytes; regulatory T lymphocytes; gut barrier; microbiome; flavonoids

Funding. This study was not supported by any external sources of funding.

Conflict of interest. The author declares no conflict of interest.

For citation: Pavlova S.I. The role of microbiota and flavonoids in maintaining the balance of helper and regulatory T-lymphocytes associated with the intestinal immune barrier. Voprosy pitaniia [Problems of Nutrition]. 2024; 93 (1): 22–32. DOI: https://doi.org/10.33029/0042-8833-2024-93-1-22-32 (in Russian)

References

1. Oemcke L.A., Anderson R.C., Altermann E., Roy N.C., McNabb W.C. The role of segmented filamentous bacteria in immune barrier maturation of the small intestine at weaning. Front Nutr. 2021; 8: 759137. DOI: https://doi.org/10.3389/fnut.2021.759137

2. Kiseleva E.P. Acceptive immunity – a basis for symbiotic relationship. Infektsiya i immunitet [Infection and Immunity]. 2019; 5 (2): 113–30. DOI: https://doi.org/10.15789/2220-7619-2015-2-113-130 (in Russian)

3. Kogut M.H., Lee A., Santin E. Microbiome and pathogen interaction with the immune system. Poult Sci. 2020; 99 (4): 1906–13. DOI: https://doi.org/10.1016/j.psj.2019.12.011

4. Ivanov I.I., Tuganbaev T., Skelly A.N., Honda K. T cell responses to the microbiota. Annu Rev Immunol. 2022; 40: 559–87. DOI: https://doi.org/10.1146/annurev-immunol-101320-011829

5. Sefik E., Geva-Zatorsky N., Oh S., Konnikova L., Zemmour D., McGuire A.M., et al. Individual intestinal symbionts induce a distinct population of RORγ regulatory T cells. Science. 2015; 349 (6251): 993–7. DOI: https://doi.org/10.1126/science.aaa9420

6. Yang B.H., Hagemann S., Mamareli P., Lauer U., Hoffmann U., Beckstette M., et al. Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 2016; 9 (2): 444–57. DOI: https://doi.org/10.1038/mi.2015.74

7. Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., et al. The microbiota regulates type 2 immunity through RORγt T cells. Science. 2015; 349 (6251): 989–93. DOI: https://doi.org/10.1126/science.aac4263

8. Bhaumik S., Mickael M.E., Moran M., Spell M., Basu R. RORγt promotes Foxp3 expression by antagonizing the effector program in colonic regulatory T cells. J Immunol. 2021; 207 (8): 2027–38. DOI: https://doi.org/10.4049/jimmunol.2100175

9. Mickael M.E., Bhaumik S., Basu R. Retinoid-related orphan receptor RORγt in CD4+ T-cell-mediated intestinal homeostasis and inflammation. Am J Pathol. 2020; 190 (10): 1984–99. DOI: https://doi.org/10.1016/j.ajpath.2020.07.010

10. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14 (8): e1002533. DOI: https://doi.org/10.1371/journal.pbio.1002533

11. Rey-Mariño A., Francino M.P. Nutrition, gut microbiota, and allergy development in infants. Nutrients. 2022; 14 (20): 4316. DOI: https://doi.org/10.3390/nu14204316

12. Jiao Y., Wu L., Huntington N.D., Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020; 11: 282. DOI: https://doi.org/10.3389/fimmu.2020.00282

13. Witkowski M., Weeks T.L., Hazen S.L. Gut microbiota and cardiovascular disease. Circ Res. 2020; 127 (4): 553–70. DOI: https://doi.org/10.1161/CIRCRESAHA.120.316242

14. Kant R., Chandra L., Verma V., Nain P., Bello D., Patel S., et al. Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World J Methodol. 2022; 12 (4): 246–57. DOI: https://doi.org/10.5662/wjm.v12.i4.246

15. Kennedy E.A., King K.Y., Baldridge M.T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol. 2018; 9: 1534. DOI: https://doi.org/10.3389/fphys.2018.01534

16. Arrieta M.C., Stiemsma L.T., Amenyogbe N., Brown E.M., Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014; 5: 427. DOI: https://doi.org/10.3389/fimmu.2014.00427

17. Derrien M., Alvarez A.-S., de Vos W.M. The gut microbiota in the first decade of life. Trends Microbiol. 2019; 27 (12): 997–1010.

18. Stewart C.J., Ajami N.J., O’Brien J.L., Hutchinson D.S., Smith D.P., Wong M.C., et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562 (7728): 583–8. DOI: https://doi.org/10.1038/s41586-018-0617-x

19. Stricker S., Hain T., Chao C.M., Rudloff S. Respiratory and intestinal microbiota in pediatric lung diseases-current evidence of the gut-lung axis. Int J Mol Sci. 2022; 23 (12): 6791. DOI: https://doi.org/10.3390/ijms23126791

20. Postler T.S., Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab. 2017; 26 (1): 110–30. DOI: https://doi.org/10.1016/j.cmet.2017.05.008

21. Schnupf P., Gaboriau-Routhiau V., Gros M., Friedman R., Moya-Nilges M., Nigro G., et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature. 2015; 520 (7545): 99–103. DOI: https://doi.org/10.1038/nature14027

22. Schnupf P., Gaboriau-Routhiau V., Sansonetti P.J., Cerf-Bensussan N. Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Curr Opin Microbiol. 2017; 35: 100–9. DOI: https://doi.org/10.1016/j.mib.2017.03.004

23. Chen H., Wang L., Wang X., Wang X., Liu H., Yin Y. Distribution and strain diversity of immunoregulating segmented filamentous bacteria in human intestinal lavage samples. Microb Ecol. 2020; 79 (4): 1021–33. DOI: https://doi.org/10.1007/s00248-019-01441

24. Ladinsky M.S., Araujo L.P., Zhang X., Veltri J., Galan-Diez M., Soualhi S., et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science. 2019; 363 (6431): eaat4042. DOI: https://doi.org/10.1126/science.aat4042

25. Flannigan K.L., Ngo V.L., Geem D., Harusato A., Hirota S.A., Parkos C.A., et al. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol. 2017; 10 (3): 673–84. DOI: https://doi.org/10.1038/mi.2016.80

26. Flannigan K.L., Denning T.L. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology. 2018; 154 (4): 537–46. DOI: https://doi.org/10.1111/imm.12950

27. Sprouse M.L., Bates N.A., Felix K.M., Wu H.J. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology. 2019; 156 (4): 305–18. DOI: https://doi.org/10.1111/imm.13037

28. Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006; 126 (6): 1121–33. DOI: https://doi.org/10.1016/j.cell.2006.07.035

29. Qin L., Waseem T.C., Sahoo A., Bieerkehazhi S., Zhou H., Galkina E.V., et al. Insights into the molecular mechanisms of T follicular helper-mediated immunity and pathology. Front Immunol. 2018; 9: 1884. DOI: https://doi.org/10.3389/fimmu.2018.01884

30. O’Shea J.J., Paul W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010; 327 (5969): 1098–102. DOI: https://doi.org/10.1126/science.1178334

31. Lyu M., Suzuki H., Kang L. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature. 2022; 610 (7933): 744–51. DOI: https://doi.org/10.1038/s41586-022-05141-x

32. Bettelli E., Korn T., Kuchroo V.K. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007; 19 (6): 652–7. DOI: https://doi.org/10.1016/j.coi.2007.07.020

33. Kayama H., Okumura R., Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020; 38: 23–48. DOI: https://doi.org/10.1146/annurev-immunol-070119-115104

34. Sidhu S.R.K., Kok C.W., Kunasegaran T., Ramadas A. Effect of plant-based diets on gut microbiota: a systematic review of interventional studies. Nutrients. 2023; 15 (6): 1510. DOI: https://doi.org/10.3390/nu15061510

35. Bolte L.A., Vich Vila A., Imhann F., Collij V., Gacesa R., Peters V., et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021; 70 (7): 1287–98. DOI: https://doi.org/10.1136/gutjnl-2020-322670

36. Li F., Liu X., Wang W., Zhang D. Consumption of vegetables and fruit and the risk of inflammatory bowel disease: a meta-analysis. Eur J Gastroenterol Hepatol. 2015; 27 (6): 623–30. DOI: https://doi.org/10.1097/MEG.0000000000000330

37. Lu Y.T., Gunathilake M., Kim J. The influence of dietary vegetables and fruits on endometrial cancer risk: a meta-analysis of observational studies. Eur J Clin Nutr. 2023; 77 (5): 561–73. DOI: https://doi.org/10.1038/s41430-022-01213-3

38. Shin S., Fu J., Shin W.K., Huang D., Min S., Kang D. Association of food groups and dietary pattern with breast cancer risk: a systematic review and meta-analysis. Clin Nutr. 2023; 42 (3): 282–97. DOI: https://doi.org/10.1016/j.clnu.2023.01.003

39. Zhao Y., Zhan J., Wang Y., Wang D. The relationship between plant-based diet and risk of digestive system cancers: a meta-analysis based on 3,059,009 subjects. Front Public Health. 2022; 10: 892153. DOI: https://doi.org/10.3389/fpubh.2022.892153

40. Mendes V., Niforou A., Kasdagli M.I., Ververis E., Naska A. Intake of legumes and cardiovascular disease: a systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis. 2023; 33 (1): 22–37. DOI: https://doi.org/10.1016/j.numecd.2022.10.006

41. Termannsen A.D., Clemmensen K.K.B., Thomsen J.M., Norgaard O., Díaz L.J., Torekov S.S., et al. Effects of vegan diets on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2022; 23 (9): e13462. DOI: https://doi.org/10.1111/obr.13462

42. Roy S., Liu W., Nandety R.S., Crook A., Mysore K.S., Pislariu C.I., et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 2020; 32 (1): 15–41. DOI: https://doi.org/10.1105/tpc.19.00279

43. Abdel-Lateif K., Bogusz D., Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav. 2012; 7 (6): 636–41. DOI: https://doi.org/10.4161/psb.20039

44. Pavlova S.I., Albegova D.Z., Vorob’eva Y.S., Laptev O.S., Kozlov I.G. Flavonoids as potential immunosuppressants affecting intracellular signaling pathways. Khimiko-farmatsevticheskiy zhurnal [Chemical-Pharmaceutical Journal]. 2016; 49 (10): 3–10. DOI: https://doi.org/10.1007/s11094-016-1345-x (in Russian)

45. Jung S.K., Ha S.J., Jung C.H., Kim Y.T., Lee H.K., Kim M.O., et al. Naringenin targets ERK2 and suppresses UVB-induced photoaging. J Cell Mol Med. 2016; 20 (5): 909–19. DOI: https://doi.org/10.1111/jcmm.12780

46. Pavlova S.I., Gladkov I.V., Kyagova A.A., Kozlov I.G. Licorice root flavonoids inhibit in vitro and in vivo induced proliferation of lymphocytes. Rossiyskiy immunologicheskiy zhurnal [Russian Journal of Immunology]. 2007; 1 (3–4): 279–82. (in Russian)

47. Pavlova S.I., Albegova D.Z., Kyagova A.A., Kozlov I.G. Immunosuppressive mechanism of action of licorice root flavonoids in contact sensitivity in mice. Rossiyskiy immunologicheskiy zhurnal [Russian Journal of Immunology]. 2010; 4 (3): 248–54. (in Russian)

48. Pavlova S.I., Albegova D.Z., Dmitrieva N.V., Dibirova G.O., Kozlov I.G. Licorice root flavonoids affect the functions of activated mouse and human T-lymphocytes. Rossiyskiy immunologicheskiy zhurnal [Russian Journal of Immunology]. 2011; 5 (14): 62–8. (in Russian)

49. Yang J., Yang X., Chu Y., Li M. Identification of Baicalin as an immunoregulatory compound by controlling T(H)17 cell differentiation. PLoS One. 2011; 6 (2): e17164. DOI: https://doi.org/10.1371/journal.pone.0017164

50. Wang J., Qi Y., Niu X., Tang H., Meydani S.N., Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem. 2018; 54: 130–9. DOI: https://doi.org/10.1016/j.jnutbio.2017.12.004

51. Kojima H., Takeda Y., Muromoto R., Takahashi M., Hirao T., Takeuchi S., et al. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicology. 2015; 329: 32–9. DOI: https://doi.org/10.1016/j.tox.2015.01.007

52. Takahashi M., Muromoto R., Kojima H., Takeuchi S., Kitai Y., Kashiwakura J.I., et al. Biochanin A enhances RORγ activity through STAT3-mediated recruitment of NCOA1. Biochem Biophys Res Commun. 2017; 489 (4): 503–8. DOI: https://doi.org/10.1016/j.bbrc.2017.05.181

53. Solenova E.A., Pavlova S.I. Antibacterial and immunomodulatory effects of flavonoids. Eksperimental’naya i klinicheskaya farmakologiya [Experimental and Clinical Pharmacology]. 2020; 83 (10): 33–9. DOI: https://doi.org/10.30906/0869-2092-2020-83-10-33-39 (in Russian)

54. Lippolis T., Cofano M., Caponio G.R., De Nunzio V., Notarnicola M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int J Mol Sci. 2023; 24 (4): 3813. DOI: https://doi.org/10.3390/ijms24043813

55. Solenova E.A., Pavlova S.I. Antibacterial and immunotropic properties of isoliquiritigenin in generalized staphylococcal infection in mice. Farmatsiya i farmakologiya [Pharmacy and Pharmacology]. 2020; 8 (3): 181–94. DOI: https://doi.org/10.19163/2307-9266-2020-8-3-181-194 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»