To the content
1 . 2024

The role of intestinal alkaline phosphatase in the development of obesity. Modulation of enzyme activity by high fat diet and dietary fiber

Abstract

Interest to the tissue-specific intestinal isoenzyme of alkaline phosphatase (IAP) has increased in recent years due to eating disorders that have led to widespread obesity and diet-related diseases. Obesity is considered as an inflammation of low intensity, which is accompanied by the manifestation of various metabolic complications and a disturbance of intestinal homeostasis. IAP is one of the participants in the mechanism of the macroorganism protection against inflammatory and infectious processes, carrying out enzymatic detoxification of bacterial lipopolysaccharide (the trigger of the inflammatory process). Deficiency of IAP activity contributes to the risk of obesity, inflammatory diseases.

The objective of the research was to summarize the current understanding of the role of IAP involved in the molecular mechanism of diet-induced obesity and to evaluate the impact of dietary components – fats and dietary fiber on IAP activity.

Material and methods. A literature search on the role of IAP in the development of obesity was carried out using PubMed, Scopus, Web of Science, Google Scholar, ResearchGate, RSCI databases.

Results. IAP prevents the development of the inflammatory process by participating in the detoxification of toxic bacterial products, limiting the translocation of pathogenic bacteria from the intestine to various tissues and organs of the macroorganism. The enzyme maintains the integrity of the intestinal barrier, influencing the synthesis and proper localization of tight junction’s proteins between intestinal epithelial cells, promotes changes in the composition of the microbiota, decreasing pathogenic bacteria and increasing the population of the community of beneficial microorganisms. IAP is involved in the regulation of fatty acid absorption and influences on the adipogenesis. Monitoring the activity of IAP present in human stool can predict the early development of such complications associated with obesity as metabolic syndrome and diabetes mellitus, Some nutrients modulate IAP activity. Depending on the amount, type, composition of fats and the duration of their consumption, either an increase or decrease in the IAP activity are observed, while dietary fibers stimulate the activity of the enzyme.

Conclusion. IAP activity can be considered as an early predictor of the risk of obesity. Deficiency of IAP activity contributes to the development of obesity caused by high-fat diet. The high activity of the enzyme contributes to the support of intestinal homeostasis and limits transepithelial movement of bacteria, weakening the inflammatory process induced by lipopolysaccharides, the excess concentration of which is detected in obesity. Stimulating enzyme activity through dietary intervention reduces the risk of obesity and metabolic complications.

Keywords:intestinal alkaline phosphatase; inflammation; obesity; high fat diet; dietary fiber

Funding. The work was carried out as part of the state assignment on the research topic “Perception of the texture of food containing hydrocolloids in people with different types of eating behavior” (FUUU-2022-0066), No. 1021051201895-9-3.1.8 (2022–2026).

Conflict of interest. The authors declare no conflict of interest.

Сontribution. Research concept, text writing – Efimtseva E.A.; collection and analysis of the material, data processing, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – both authors.

For citation: Efimtseva E.A., Chelpanova T.I. The role of intestinal alkaline phosphatase in the development of obesity. Modulation of enzyme activity by high fat diet and dietary fiber. Voprosy pitaniia [Problems of Nutrition]. 2024; 93 (1): 44–60. DOI: https://doi.org/10.33029/0042-8833-2024-93-1-44-60 (in Russian)

  1. Kühn F., Adiliaghdam F., Cavallaro P.M., Hamarneh S.R., Tsurumi A., Hoda R.S., et al. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight. 2020; 5 (6): e134049. DOI: https://doi.org/10.1172/jci.insight.134049
  2. Lukas M., Drastich P., Konecny M., Gionchetti P., Urban O., Cantoni F., et al. Exogenous alkaline phosphatase for the treatment of patients with moderate to severe ulcerative colitis. Inflamm Bowel Dis. 2010; 16 (7): 1180–6. DOI: https://doi.org/10.1002/ibd.21161
  3. Bentala H., Verweij W.R., Huizinga-Van der Vlag A., van Loenen-Weemaes A.M., Meijer D.K., Poelstra K. Removal of phosphate from lipid A as strategy to detoxify lipopolysaccharide. Shock. 2002; 18 (6): 561–6. DOI: https://doi.org/10.1097/00024382-200212000-00013
  4. Riggle K.M., Rentea R.M., Welak S.R., Pritchard K.A. Jr, Oldham K.T., Gourlay D.M. Intestinal alkaline phosphatase prevents the systematic inflammatory response associated with necrotizing enterocolitis. J Surg Res. 2013; 180 (1): 21–6. DOI: https://doi.org/10.1016/j.jss.2012.10.042
  5. Fawley J., Gourlay D.M. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res. 2016; 202 (1): 225–34. DOI: https://doi.org/10.1016/j.jss.2015.12.008
  6. Chen K.T., Malo M.S., Moss A.K., Zeller S., Johnson P., Ebrahimi F., et al. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010; 299 (2): G467–75. DOI: https://doi.org/10.1152/ajpgi.00364.2009
  7. Moss A.K., Hamarneh S.R., Mohamed M.M.R., Ramasamy S., Yammine H., Patel P., et al. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol. 2013; 304 (6): G597–604. DOI: https://doi.org/10.1152/ajpgi.00455.2012
  8. Malo M.S., Moaven O., Muhammad N., Biswas B., Alam S.N., Economopoulos K.P., et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol. 2014; 306 (10): G826–38. DOI: https://doi.org/10.1152/ajpgi.00357.2013
  9. Akiba Y., Mizumori M., Guth P.H., Engel E., Kaunitz J.D. Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats. Am J Physiol Gastrointest Liver Physiol. 2007; 293 (6): G1223–33. DOI: https://doi.org/10.1152/ajpgi.00313.2007
  10. Malo M.S., Alam S.N., Mostafa G., Zeller S.J., Johnson P.V., Mohammad N., et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut. 2010; 59 (11): 1476–84. DOI: https://doi.org/10.1136/gut.2010.211706
  11. Capitán-Cañadas F., Ocón B., Aranda C.J., Anzola A., Suárez M.D., Zarzuelo A., et al. Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice. Eur J Nutr. 2016; 55 (4): 1445–54. DOI: https://doi.org/10.1007/s00394-015-0962-6
  12. Ghosh S.S., Ghosh S. Intestinal barrier function – a novel target to modulate diet-induced metabolic diseases. Arch Gastroenterol Res. 2020; 1 (3): 61–5. DOI: https://doi.org/10.33696/Gastroenterology.1.012
  13. Liu W., Hu D., Huo H., Zhang W., Adiliaghdam F., Morrison S., et al. Intestinal alkaline phosphatase regulates tight junction protein levels. J Am Coll Surg. 2016; 222 (6): 1009–17. DOI: https://doi.org/10.1016/j.jamcollsurg.2015.12.006
  14. Hamarneh S.R., Mohamed M.M., Economopoulos K.P., Morrison S.A., Phupitakphol T., Tantillo T.J., et al. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement. Ann Surg. 2014; 260 (4): 706–15. DOI: https://doi.org/10.1097/sla.0000000000000916
  15. Lallès J.-P. Luminal ATP: the missing link between intestinal alkaline phosphatase, the gut microbiota, and inflammation? Am J Physiol Gastrointest Liver Physiol. 2014; 306 (10): G824–5. DOI: https://doi.org/10.1152/ajpgi.00435.2013
  16. Moreira A.P.B., Texeira T.F.S., Ferreira A.B., Peluzio M. do C., Alfenas R. de C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxemia. Br J Nutr. 2012; 108 (5): 801–9. DOI: https://doi.org/10.1017/s0007114512001213
  17. Li H., Zhao Y., Li W., Yang J., Wu H. Critical role of neutrophil alkaline phosphatase in the antimicrobial function of neutrophils. Life Sci. 2016; 157: 152–7. DOI: https://doi.org/10.1016/j.lfs.2016.06.005
  18. Bauer P.V., Hamr S.C., Duca F.A. Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016; 73 (4): 737–55. DOI: https://doi.org/10.1007/s00018-015-2083-z
  19. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016; 165 (6): 1332–45. DOI: https://doi.org/10.1016/j.cell.2016.05.041
  20. Desai M.S., Seekatz A.M, Koropatkin N.M., Kamada N., Hickey C.A., Wolter M., et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016; 167 (5): 1339–53. e21. DOI: https://doi.org/10.1016/j.cell.2016.10.043
  21. Okazaki Y., Katayama T. High-fat diet promotes the effect of fructo-oligosaccharides on the colonic luminal environment, including alkaline phosphatase activity in rats. Nutr Res. 2023; 110: 44–56. DOI: https://doi.org/10.1016/j.nutres.2022.12.009
  22. Bliss E.S., Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018; 9: 900. DOI: https://doi.org/10.3389/fphys.2018.00900
  23. Melo A.D.B., Silveira H., Bortoluzzi C., Lara L.J., Garbossa C.A., Preis G., et al. Intestinal alkaline phosphatase and sodium butyrate may be beneficial in attenuating LPS-induced intestinal inflammation. Genet Mol Res. 2016; 15 (4): gmr15048875. DOI: https://doi.org/10.4238/gmr15048875
  24. Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014; 5: 3611. DOI: https://doi.org/10.1038/ncomms4611
  25. Stojanov S., Berlec A., Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020; 8 (11): 1715. DOI: 10.3390/microorganisms8111715
  26. Lynes M.D., Widmaier E.P. Involment of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sci. 2011; 88 (9–10): 384–91. DOI: https://doi.org/10.1016/j.lfs.2010.12.015
  27. WHO – World Health Organization World Health Organization Obesity and overweight Fact Sheet. 2016. URL: http://www.who.int/mediacentre/factsheets/fs311/en/ (date of access January 30, 2018).
  28. Dailey M.J. Nutrient-induced intestinal adaption and its effect in obesity. Physiol Behav. 2014; 136: 74–8. DOI: https://doi.org/10.1016/j.physbeh.2014.03.026
  29. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56 (7): 1761–72. DOI: https://doi.org/10.2337/db06-1491
  30. Kaliannan K, Hamarneh S.R., Economopoulos K.P., Nasrin Alam S., Moaven O., Patel P., et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA. 2013; 110 (17): 7003–8. DOI: https://doi.org/10.1073/pnas.1220180110
  31. de La Serre C.B., Ellis C.L., Lee J., Hartman A.L., Rutledge J.C., Raybould H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 299 (2): G440–8. DOI: https://doi.org/10.1152/ajpgi.00098.2010
  32. Šefŝikovà Z., Bujňàkovà D. Effect of pre- and post-weaning high-fat dietary manipulation on intestinal microflora and alkaline phosphatase activity in male rats. Physiol Rev. 2017; 66(4): 677–85. DOI: https://doi.org/10.33549/physiolres.933500

  1. Ghosh S.S., He H., Wang J., Korzun W., Yannie P.J., Ghosh S. Intestine-specific expression of human himeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance. Physiol Rep. Jul 2018; 6 (14): e13790. DOI: https://doi.org/10.14814/phy2.13790
  2. Parekh P.J., Balart L.A., Johnson D.A. The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol. 2015; 6 (6): e91. DOI: https://doi.org/10.1038/ctg.2015.16
  3. Goldberg R.F., Austen W.G Jr., Zhang X., Munene G., Mostafa G., Biswas S., et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA. 2008; 105 (9): 3551–6. DOI: https://doi.org/10.1073/pnas.0712140105
  4. Lallès J.P. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev. 2019; 77 (10): 710–24. DOI: https://doi.org/10.1093/nutrit/nuz015
  5. Gromova L.V., Polozov A.S., Savochkina E.V., Alekseeva A.S., Dmitrieva Y.V., Kornyushin O.V., et al. Effect of type 2 diabetes and impaired glucose tolerance on digestive enzymes and glucose absorption in the small intestine of young rats. Nutrients. 2022; 14 (2): 385. DOI: https://doi.org/10.3390/nu14020385
  6. Mozeš Š., Šefčíková Z., Raček Ľ. Effect of repeated fasting/refeeding on obesity development and health complications in rats arising from reduced nest. Dig Dis Sci. 2015; 60 (2): 354–61. DOI: https://doi.org/10.1007/s10620-014-3340-y
  7. Zhou W., Davis E.A., Dailey M.J. Obesity, independent of diet, drives lasting effects on intestinal epithelial stem cell proliferation in mice. Exp Biol Med (Maywood). 2018; 243 (10): 826–35. DOI: https://doi.org/10.1177/1535370218777762
  8. Lopez-Cepero A.A., Palacios C. Association of the intestinal microbiota and obesity. P R Health Sci J. 2015; 34 (2): 60–4. PMID: 26061054.
  9. Kaliannan K., Wang B., Li X.Y., Kim K.J., Kang J.X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015; 5: 11276. DOI: https://doi.org/10.1038/srep11276
  10. DeCoffee D., Quin C., Gill S.K., Tasnim N., Brown K., Godovannyi A., et al. Dietary lipid type, rather than total number of calories, alters outcomes of enteric infection in mice. J Infect Dis. 2016; 213 (11): 1846–56. DOI: https://doi.org/10.1093/infdis/jiw084
  11. Cerdó T., García-Santos J.A., Bermúdez M.G., Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients. 2019; 11 (3): 635. DOI: https://doi.org/10.3390/nu11030635
  12. Efimtseva E.A., Chelpanova T.I. Apples as a source of soluble and insoluble dietary fibers: effect of dietary fibers on appetite. Fiziologiya cheloveka [Human Physiology]. 2020; 46 (2): 224–34. DOI: 10.1134/S036211972002005X (in Russian)
  13. Hijová E., Bertková I., Štofilová J. Dietary fibre as prebiotics in nutrition. Cent Eur J Public Health. 2019; 27 (3): 251–55. DOI: https://doi.org/10.21101/cejph.a5313
  14. Santos G.M., Ismael S., Morais J., Araújo J.R., Faria A., Calhau C., Marques C. Intestinal alkaline phosphatase: a review of this enzyme role in the intestinal barrier function. Microorganisms. 2022; 10 (4): 746. DOI: https://doi.org/10.3390/microorganisms10040746
  15. Ali Q., Ma S., La S., Guo Z., Liu B., Gao Z., et al. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health – a review. Anim Biosci. 2022; 35 (10): 1461–78. DOI: https://doi.org/10.5713/ab.21.0562
  16. Brown R.C., Kelleher J., Losowsky M.S. The effect of pectin on the structure and function of the rat small intestine. Br J Nutr. 1979; 42 (3): 357–65. DOI: https://doi.org/10.1079/bjn19790125
  17. Johnson I.T., Gee J.M., Mahoney R.R. Effect of dietary supplements of guar gum and cellulose on intestinal cell proliferation, enzyme levels and sugar transport in the rat. Br J Nutr. 1984; 52 (3): 477–87. DOI: https://doi.org/10.1079/bjn19840115
  18. Calvert R., Schneeman B.O., Satchithanandam S., Cassidy M.M., Vahouny G.V. Dietary fiber and intestinal adaptation: effects on intestinal and pancreatic digestive enzyme activities. Am J Clin Nutr. 1985; 41 (6): 1249–56. DOI: https://doi.org/10.1093/ajcn/41.6.1249
  19. Johnson I.T., Gee J.M. Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. Br J Nutr. 1986; 55 (3): 497–505. DOI: https://doi.org/10.1079/bjn19860057
  20. Chun W., Bamba T., Hosoda S. Effect of pectin, a soluble dietary fiber, on functional and morphological parameters of the small intestine in rats. Digestion. 1989; 42 (1): 22–9. DOI: https://doi.org/10.1159/000199821
  21. Khokhar S. Dietary fibers: their effects on intestinal digestive enzyme activities. J Nutr Biochem. 1994; 5 (4): 176–80. DOI: https://doi.org/10.1016/0955-2863(94)90069-8
  22. Gibson P.R., Nov R., Fielding M., McIntyre A., Finch C.F., Rosella O., et al. Relationship of hydrolase activities to epithelial cell turnover in distal colonic mucosa of normal rats. J Gastroenterol Hepatol. 1999; 14 (9): 866–72. DOI: https://doi.org/10.1046/j.1440-1746.1999.01973.x
  23. Lu Z.X., Gibson P.R., Muir J.G., Fielding M., O’Dea K. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J Nutr. 2000; 130 (8): 1984–90. DOI: https://doi.org/10.1093/jn/130.8.1984
  24. Morita T., Tanabe H., Sugiyama K., Kasaoka S., Kiriyama S. Dietary resistant starch alters the characteristics of colonic mucosa and exerts a protective effect on trinitrobenzene sulfonic acid-induced colitis in rats. Biosci Biotechnol Biochem. 2004; 68 (10): 2155–64. DOI: https://doi.org/10.1271/bbb.68.2155
  25. Chau C.-F., Sheu F., Huang Y.-L., Su L.-H. Improvement in intestinal function and health by the peel fibre derived from Citrus sinensis L. cv Liucheng. J Sci Food Agric. 2005; 85: 1211–16. DOI: https://doi.org/10.1002/jsfa.2082
  26. Hromadkova Z., Malovíková A., Mozeš S., Sroková I., Ebringerová A. Hydrophobically modified pectates as novel functional polymers in food and non-food applications. BioResources. 2008; 3 (1): 71–8.
  27. Mineo H., Morikawa N., Ohmi S., Ishida K., Machida A., Kanazawa T., et al. Ingestion of potato starch containing esterified phosphorus increases alkaline phosphatase activity in the small intestine in rats. Nutr Res. 2010; 30 (5): 341–47. DOI: https://doi.org/10.1016/j.nutres.2010.05.003
  28. Chen H., Wang W., Degroote J., Possemiers S., Chen D., De Smet S., Michiels J. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. J Nutr. 2015; 145 (1): 51–8. DOI: https://doi.org/10.3945/jn.114
  29. Jiang T., Gao X., Wu C., Tian F., Lei Q., Bi J., et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients. 2016; 8 (3): 126. DOI: https://doi.org/10.3390/nu8030126
  30. Yang H.S., Xiong X., Li J.Z., Yin Y.L. Effects of chito-oligosaccharide on intestinal mucosal amino acid profiles and alkaline phosphatase activities, and serum biochemical variables in weaned piglets. Livest Sci. 2016; 190: 141–6. DOI: http://dx.doi.org/10.1016/j.livsci.2016.06.008
  31. Šefčíková Z, Raček L. Effect of pectin feeding on obesity development and duodenal alkaline phosphatase activity in Sprague-Dawley rats fed with high-fat/high-energy diet. Physiol Int. 2016; 103 (2): 183–90. DOI: https://doi.org/10.1556/036.103.2016.2.5
  32. Okazaki Y., Katayama T. Glucomannan consumption elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I, which is associated with increased production of protective factors for gut epithelial homeostasis in high-fat diet–fed rats. Nutr Res. 2017; 43: 43–50. DOI: https://doi.org/10.1016/j.nutres.2017.05.012
  33. Okazaki Y., Katayama T. Consumption of non-digestible oligosaccharides elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I with increased mucins and microbial fermentation in rats fed a high-fat diet. Br J Nutr. 2019; 121 (2): 146–54. DOI: https://doi.org/10.1017/S0007114518003082
  34. Chandrarathna H.P.S.U., Liyanage T.D., Edirisinghe S.L., Dananjaya S.H.S., et al. Marine microalgae, Spirulina maxima-derived modified pectin and modified pectin nanoparticles modulate the gut microbiota and trigger immune responses in mice. Mar Drugs. 2020; 18 (3): 175. DOI: https://doi.org/10.3390/md18030175
  35. Okazaki Y., Katayama T. The effects of different high-fat (lard, soybean oil, corn oil or olive oil) diets supplemented with fructo-oligosaccharides on colonic alkaline phosphatase activity in rats. Eur J Nutr. 2021; 60 (1): 89–99. DOI: https://doi.org/10.1007/s00394-020-02219-y
  36. Suryadiningrat M., Kurniawati D.Y., Mujiburrahman A., Purnama M.T.E. Dietary polyvinyl alcohol and alginate nanofibers ameliorate hyperglycemia by reducing insulin and glucose-metabolizing enzyme levels in rats with streptozotocin-induced diabetes. Vet World. 2021; 14 (4): 847–53. DOI: https://doi.org/10.14202/vetworld.2021.847-853

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»