To the content
2 . 2024

The role of ω-3 polyunsaturated fatty acids in child development

Abstract

ω-3 polyunsaturated fatty acids (PUFAs) are incorporated in cell membranes and play an important role in the development and functioning of organs. Consolidation of data on the role of ω-3 PUFAs in child development may increase the professional’s awareness, help to plan clinical studies, and develop recommendations for supplementation.

The aim of the research was to analyze literature data on the effect of ω-3 PUFAs on the central nervous system, immune system, and vision in children.

Material and methods. 86 literature sources have been analyzed, a keyword search was carried out in the PubMed, Scopus, Elsevier, eLibrary and Google Scholar databases.

Results. ω-3 PUFAs (alpha-linolenic, docosahexaenoic and eicosapentaenoic acids) are not synthesized in the human organism, and should be obtained from food. The need for ω-3 PUFAs is especially high during periods of rapid growth (the first years of life and adolescence). ω-3 PUFAs play an important role in the anatomical and functional development of the brain, affecting the maturation and functioning of neurons, participating in the processes of neurogenesis, migration, synaptogenesis, and neurotransmission. The results of clinical studies on the effect of ω-3 PUFAs on the cognitive functions of healthy children and patients with attention deficit hyperactivity disorder are contradictory, which requires further research. PUFAs are substrates for the synthesis of bioactive compounds and take part in the control of acute and chronic inflammation, and also have a regulatory effect on immune cells. ω-3 PUFAs supplementation decreases the frequency and duration of acute respiratory viral infections in children. This indicates the potential effectiveness of ω-3 PUFAs in the prevention of acute respiratory viral infections. Сlinical studies demonstrated positive effects of ω-3 PUFAs on retinal development in premature infants.

Conclusion. Adequate intake of ω-3 PUFAs is essential for the development and functioning of the central nervous system, immune system and vision in children. The body content of ω-3 PUFAs is closely related to the nutrition. In the Russian Federation, consumption of fish and other products containing ω-3 PUFAs is traditionally low. The majority of the Russian population has a deficiency in ω-3 PUFA consumption. With an unbalanced diet, supplementation of ω-3 PUFAs is necessary.

Keywords:omega-3; polyunsaturated fatty acids; children; cognitive functions; immunity; docosahexaenoic acid; eicosapentaenoic acid

Funding. The study had no sponsorship. The article was published with the financial support of Tymlatsky Fish Factory, LLC.

Conflict of interest. The authors declare no conflict of interest.

Contribution. Concept and design of the study – Khachatryan L.G., Kolosova N.G.; collecting and processing the material – Ozerskaia I.V., Kolosova N.G.; text writing – Ozerskaia I.V., Polyanskaya A.V., Kasanave E.V.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.

For citation: Ozerskaia I.V., Khachatryan L.G., Kolosova N.G., Polyanskaya A.V., Kasanave E.V. The role of ω-3 polyunsaturated fatty acids in child development. Voprosy pitaniia [Problems of Nutrition]. 2024; 93 (2): 6–18. DOI: https://doi.org/10.33029/0042-8833-2024-93-2-6-18 (in Russian)

References

1. Gladyshev M.I. Essential polyunsaturated fatty acids and their dietary sources for humans. Zhurnal Sibirskogo federal’nogo universiteta. Biologiya [Journal of Siberian Federal University. Biology]. 2012; 5 (4): 352–86. (in Russian)

2. Kytikova O.Yu., Novgorodtseva T.P., Denisenko Yu.K., Antonyuk M.V., Gvozdenko T.A. Omega-3 polyunsaturated fatty acids for the management of dyslipidemia and reduction of residual cardiovascular risk. Byulleten’ fiziologii i patologii dykhaniya [Bulletin Physiology and Pathology of Respiration]. 2023; (87): 124–37. DOI: https://doi.org/10.36604/1998-5029-2023-87-124-137 (in Russian)

3. James M., Proudman S., Cleland L. Fish oil and rheumatoid arthritis: past, present and future. Proc Nutr Soc. 2010; 69: 316–23. DOI: https://doi.org/10.1017/S0029665110001564

4. Borasio F., De Cosmi V., D’Oria V., Scaglioni S., Syren M.E., Turolo S., et al. Associations between dietary intake, blood levels of omega-3 and omega-6 fatty acids and reading abilities in children. Biomolecules. 2023; 13 (2): 368. DOI: https://doi.org/10.3390/biom13020368

5. Sinclair A.J., Wang Y., Li D. What is the evidence for dietary-induced DHA deficiency in human brains? Nutrients. 2022; 15 (1): 161. DOI: https://doi.org/10.3390/nu15010161

6. Makhutova O.N., Gladyshev M.I. Essential PUFA in physiology and metabolism of fish and human: functions, needs, sources. Rossiyskiy fiziologicheskiy zhurnal imeni I.M. Sechenova [Russian Journal of Physiology named after I.M. Sechenov]. 2020; 106 (5): 601–21. DOI: https://doi.org/10.31857/S0869813920050040 (in Russian)

7. Shikh E.V., Makhova A.A. Long-chain ω-3 polyunsaturated fatty acids in the prevention of diseases in adults and children: a view of the clinical pharmacologist. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (2): 91–100. DOI: https://doi.org/10.24411/0042-8833-2019-10022 (in Russian)

8. Skidan I.N., Kaznacheev K.S., Gulyaev A.E. Cholesterol – an essential component of infant milk formulae? Voprosy pitaniia [Problems of Nutrition]. 2016; 85 (6): 118–30. DOI: https://doi.org/10.24411/0042-8833-2016-00086 (in Russian)

9. Tan K., Lim L., Peng Y., Cheong K.L. Effects of food processing on the lipid nutritional quality of commercially important fish and shellfish. Food Chem X. 2023; 20: 101034. DOI: https://doi.org/10.1016/j.fochx.2023.101034

10. Kalinchenko S.Yu., Solov’ev D.O., Avetisyan L.A., Belov D.A., Paramonov S.A., Nizhnik A.N. Prevalence of omega-3 fatty acid deficiency in different age groups. Voprosy dietologii [Problems of Dietology]. 2018; 8 (1): 11–6. DOI: https://doi.org/10.20953/2224-5448-2018-1-11-16 (in Russian)

11. Sheppard K.W., Cheatham C.L. Omega-6/omega-3 fatty acid intake of children and older adults in the U.S.: dietary intake in comparison to current dietary recommendations and the Healthy Eating Index. Lipids Health Dis. 2018; 17 (1): 43. DOI: https://doi.org/10.1186/s12944-018-0693-9

12. Redruello-Requejo M., Samaniego-Vaesken M.L., Puga A.M., MonteroBravo A., Ruperto M., Rodríguez-Alonso P., et al. Omega-3 and omega-6 polyunsaturated fatty acid intakes, determinants and dietary sources in the Spanish population: findings from the ANIBES study. Nutrients. 2023; 15 (3): 562. DOI: https://doi.org/10.3390/nu15030562

13. Li W., Tang D., Li F., Tian H., Yue X., Li F., et al. Supplementation with dietary linseed oil during peri-puberty stimulates steroidogenesis and testis development in rams. Theriogenology. 2017; 102: 10–5. DOI: https://doi.org/10.1016/j.theriogenology.2017.07.002

14. Sibbons C.M., Brenna J.T., Lawrence P., Hoile S.P., Clarke-Harris R., Lillycrop K.A. Effect of sex hormones on n-3 polyunsaturated fatty acid biosynthesis in HepG2 cells and in human primary hepatocytes. Prostaglandins Leukot Essent Fatty Acids. 2014; 90 (2–3): 47–54. DOI: https://doi.org/10.1016/j.plefa.2013.12.006

15. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academy Press, 2005. URL: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional

16. Thompson M., Hein N., Hanson C., Smith L.M., Anderson-Berry A., Richter C.K., et al. Omega-3 fatty acid intake by age, gender, and pregnancy status in the United States: National Health and Nutrition Examination Survey 2003–2014. Nutrients. 2019; 11 (1): 177. DOI: https://doi.org/10.3390/nu11010177

17. EFSA (European Food Safety Authority), 2017. Dietary reference values for nutrients: summary report. EFSA Supporting Publication. 2017; 14 (12): e15121. DOI: https://doi.org/10.2903/sp.efsa.2017.e15121

18. Gopinath B., Moshtaghian H., Flood V.M., Louie J.C., Liew G., Burlutsky G., et al. Pattern of omega-3 polyunsaturated fatty acid intake and fish consumption and retinal vascular caliber in children and adolescents: a cohort study. PLoS One. 2017; 12 (2): e0172109. DOI: https://doi.org/10.1371/journal.pone.0172109

19. World Health Organization. Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. Rome: World Health Organization, 2010.

20. Ryzhkova S.M., Kruchinina V.M. Trends in the consumption of fish and fish products in Russia. Vestnik VGUIT [Proceedings of the Voronezh State University of Engineering Technologies]. 2020; 82 (2): 181–9. DOI: https://doi.org/10.20914/2310-1202-2020-2-181-189 (in Russian)

21. Kulikova A.S., Titova I.M. Analysis of food and energy value of the menu of some municipal pre-school educational institutions of the Kaliningrad Region. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (1): 71–6. DOI: https://doi.org/10.24411/0042-8833-2019-10008 (in Russian)

22. Filimonov S.N., Tapeshkina N.V., Kos’kina E.V., Vlasova O.P., Sitnikova E.M., Sviridenko O.A. State of actual nutrition for children and teenagers of school age. Gigiena i sanitariya [Hygiene and Sanitation]. 2020; 99 (7): 719–24. DOI: https://doi.org/10.33029/0016-9900-2020-99-7-719-724 (in Russian)

23. Petrova S.N., Yeshchenko A.R., Mineeva E.M. Fat Content in preschoolers’ diet. Tekhnika i tekhnologiya pischevykh proizvodstv [Technique and Technology of Food Production]. 2019; 49 (4): 621–8. DOI: https://doi.org/10.21603/2074-9414-2019-4-621-628 (in Russian)

24. Bogdanova O.G., Efimova N.V., Myl’nikova I.V. Comparative nutritional characteristics in schoolchildren with different nutritional status. Gigiena i sanitariya [Hygiene and Sanitation]. 2022; 101 (9): 1072–9. DOI: https://doi.org/10.47470/0016-9900-2022-101-9-1072-1079 (in Russian)

25. Martínez-Martínez M.I., Alegre-Martínez A., Cauli O. Omega-3 long-chain polyunsaturated fatty acids intake in children: the role of family-related social determinants. Nutrients. 2020; 12 (11): 3455. DOI: https://doi.org/10.3390/nu12113455

26. von Schacky C. Omega-3 fatty acids in pregnancy – the case for a target omega-3 index. Nutrients. 2020; 12 (4): 898. DOI: https://doi.org/10.3390/nu12040898

27. Sun Q., Ma J., Campos H., Hankinson S.E., Hu F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007; 86: 74–81. DOI: https://doi.org/10.1093/ajcn/86.1.74

28. Stark K.D., Van Elswyk M.E., Higgins M.R., Weatherford C.A., Salem N. Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res. 2016; 63: 132–52. DOI: https://doi.org/10.1016/j.plipres.2016.05.001

29. Walchuk C., Suh M. Nutrition and the aging retina: A comprehensive review of the relationship between nutrients and their role in age-related macular degeneration and retina disease prevention. Adv Food Nutr Res. 2020; 93: 293–332. DOI: https://doi.org/10.1016/bs.afnr.2020.04.003

30. SanGiovanni J.P., Chew E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res. 2005; 24: 87–138. DOI: https://doi.org/10.1016/j.preteyeres.2004.06.002

31. Yang Z.H., Gorusupudi A., Lydic T.A., Mondal A.K., Sato S., Yamazaki I., et al. Dietary fish oil enriched in very-long-chain polyunsaturated fatty acid reduces cardiometabolic risk factors and improves retinal function. iScience. 2023; 26 (12): 108411. DOI: https://doi.org/10.1016/j.isci.2023.108411

32. Teisen M.N., Vuholm S., Niclasen J., Aristizabal-Henao J.J., Stark K.D., Geertsen S.S., et al. Effects of oily fish intake on cognitive and socioemotional function in healthy 8-9-year-old children: the FiSK Junior randomized trial. Am J Clin Nutr. 2020; 112 (1): 74–83. DOI: https://doi.org/10.1093/ajcn/nqaa050

33. Nikolaeva S.V., Usenko D.V., Shushakova E.K., Savvateeva O.A., Gorelov A.V. Value of omega-3 polyunsaturated fatty acids for children. RMZh [Russian Medical Journal]. 2020; 28 (2): 28–32. (in Russian)

34. Eilander A., Hundscheid D.C., Osendarp S.J., Transler C., Zock P.L. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2007; 76 (4): 189–203. DOI: https://doi.org/10.1016/j.plefa.2007.01.003

35. Ginsberg G.L., Toal B.F., McCann P.J. Updated risk/benefit analysis of fish consumption effects on neurodevelopment: implications for setting advisories. Hum Ecol Risk Assess. 2015; 21 (7): 1810–39.

36. Henriksen C., Haugholt K., Lindgren M., Aurvag A.K., Ronnestad A., Gronn M., et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics. 2008; 121 (6): 1137–45. DOI: https://doi.org/10.1542/peds.2007-1511

37. Colombo J., Jill Shaddy D., Kerling E.H., Gustafson K.M., Carlson S.E. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes. Prostaglandins Leukot Essent Fatty Acids. 2017; 121: 52–6. DOI: https://doi.org/10.1016/j.plefa.2017.05.005

38. Johnson M., Fransson G., Östlund S., Areskoug B., Gillberg C. Omega 3/6 fatty acids for reading in children: a randomized, double-blind, placebo-controlled trial in 9-year-old mainstream schoolchildren in Sweden. J Child Psychol Psychiatry. 2017; 58 (1): 83–93. DOI: https://doi.org/10.1111/jcpp.12614

39. Kennedy D.O., Jackson P.A., Elliott J.M., Scholey A.B., Robertson B.C., Greer J., et al Cognitive and mood effects of 8 weeks’ supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10-12 years. Nutr Neurosci. 2009; 12 (2): 48–56. DOI: https://doi.org/10.1179/147683009X388887

40. Montgomery P., Spreckelsen T.F., Burton A., Burton J.R., Richardson A.J. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: a randomized controlled trial for replication (the DOLAB II study). PLoS One. 2018; 13 (2): e0192909. DOI: https://doi.org/10.1371/journal.pone.0192909

41. Chang J.P., Su K.P., Mondelli V., Pariante C.M. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: a systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology. 2018; 43 (3): 534–45. DOI: https://doi.org/10.1038/npp.2017.160

42. Stevens L., Zhang W., Peck L., Kuczek T., Grevstad N., Mahon A., et al. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids. 2003; 38: 1007–21. DOI: https://doi.org/10.1007/s11745-006-1155-0

43. Su K.P., Lai H.C., Yang H.T., Su W.P., Peng C.Y., Chang J.P., et al. Omega-3 fatty acids in the prevention of interferon-alpha induced depression: results from a randomized, controlled trial. Biol Psychiatry. 2014; 76: 559–66. DOI: https://doi.org/10.1016/j.biopsych.2014.01.008

44. Donfrancesco R., Nativio P., Borrelli E., Giua E., Andriola E., Villa M.P., et al. Serum cytokines in pediatric neuropsychiatric syndromes: focus on Attention Deficit Hyperactivity Disorder. Minerva Pediatr (Torino). 2021; 73 (5): 398–404. DOI: https://doi.org/10.23736/S2724-5276.16.04642-9

45. Milte C.M., Sinn N., Buckley J.D., Coates A.M., Young R.M., Howe P.R. Polyunsaturated fatty acids, cognition and literacy in children with ADHD with and without learning difficulties. J Child Health Care. 2011; 15: 299–311. DOI: https://doi.org/10.1177/1367493511403953

46. Manor I., Magen A., Keidar D., Rosen S., Tasker H., Cohen T., et al. The effect of phosphatidylserine containing Omega3 fatty acids on attention-deficit hyperactivity disorder symptoms in children: a double-blind placebo-controlled trial, followed by an open-label extension. Eur Psychiatry. 2012; 27: 335–42. DOI: https://doi.org/10.1016/j.eurpsy.2011.05.004

47. Perera H., Jeewandara K.C., Seneviratne S., Guruge C. Combined omega3 and omega6 supplementation in children with attention-deficit hyperactivity disorder (ADHD) refractory to methylphenidate treatment: a double-blind, placebo-controlled study. J Child Neurol. 2012; 27: 747–53. DOI: https://doi.org/10.1177/0883073811435243

48. San Mauro Martin I., Sanz Rojo S., González Cosano L., Conty de la Campa R., Garicano Vilar E., Blumenfeld Olivares J.A. Impulsiveness in children with attention-deficit/hyperactivity disorder after an 8-week intervention with the Mediterranean diet and/or omega-3 fatty acids: a randomised clinical trial. Neurologia (Engl Ed). 2022; 37 (7): 513–23. DOI: https://doi.org/10.1016/j.nrleng.2019.09.009

49. Chang J.P., Su K.P., Mondelli V., Satyanarayanan S.K., Yang H.T., Chiang Y.J., et al. High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels. Transl Psychiatry. 2019; 9 (1): 303. DOI: https://doi.org/10.1038/s41398-019-0633-0

50. Crippa A., Tesei A., Sangiorgio F., Salandi A., Trabattoni S., Grazioli S., et al. Behavioral and cognitive effects of docosahexaenoic acid in drug-naïve children with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled clinical trial. Eur Child Adolesc Psychiatry. 2019; 28 (4): 571–83. DOI: https://doi.org/10.1007/s00787-018-1223-z

51. Carucci S., Romaniello R., Demuru G., Curatolo P., Grelloni C., Masi G., et al. Omega-3/6 supplementation for mild to moderate inattentive ADHD: a randomised, double-blind, placebo-controlled efficacy study in Italian children. Eur Arch Psychiatry Clin Neurosci. 2022; 272 (8): 1453–67. DOI: https://doi.org/10.1007/s00406-022-01428-2

52. Gillies D., Leach M.J., Perez Algorta G. Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database Syst Rev. 2023; 4 (4): CD007986. DOI: https://doi.org/10.1002/14651858.CD007986.pub3

53. Döpfner M., Dose C., Breuer D., Heintz S., Schiffhauer S., Banaschewski T. Efficacy of omega-3/omega-6 fatty acids in preschool children at risk of ADHD: a randomized placebo-controlled trial. J Atten Disord. 2021; 25 (8): 1096–106. DOI: https://doi.org/10.1177/1087054719883023

54. Oriá R.B., Empadinhas N., Malva J.O. Editorial: interplay between nutrition, the intestinal microbiota and the immune system. Front Immunol. 2020; 11: 1758. DOI: https://doi.org/10.3389/fimmu.2020.01758

55. Gutiérrez S., Svahn S.L., Johansson M.E. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci. 2019; 20 (20): 5028. DOI: https://doi.org/10.3390/ijms20205028

56. De Cosmi V., Mazzocchi A., Turolo S., Syren M.L., Milani G.P., Agostoni C. Long-chain polyunsaturated fatty acids supplementation and respiratory infections. Ann Nutr Metab. 2022; 10: 1–8. DOI: https://doi.org/10.1159/000522093

57. Miles E.A., Childs C.E., Calder P.C. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: a narrative review. Nutrients. 2021; 13 (1): 247. DOI: https://doi.org/10.3390/nu13010247

58. Pecora F., Persico F., Argentiero A., Neglia C., Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients. 2020; 12 (10): 3198. DOI: https://doi.org/10.3390/nu12103198

59. Sveiven S.N., Anesko K., Morgan J., Nair M.G., Nordgren T.M. Lipid-sensing receptor FFAR4 modulates pulmonary epithelial homeostasis following immunogenic exposures independently of the FFAR4 ligand docosahexaenoic acid (DHA). Int J Mol Sci. 2023; 24 (8): 7072. DOI: https://doi.org/10.3390/ijms24087072

60. Price P.T., Nelson C.M., Clarke S.D. Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr Opin Lipidol. 2000; 11 (1): 3–7. DOI: https://doi.org/10.1097/00041433-200002000-00002

61. Nordgren T.M., Heires A.J., Bailey K.L., Katafiasz D.M., Toews M.L., Wichman C.S., et al. Docosahexaenoic acid enhances amphiregulin-mediated bronchial epithelial cell repair processes following organic dust exposure. Am J Physiol Lung Cell Mol Physiol. 2018; 314 (3): L421–31. DOI: https://doi.org/10.1152/ajplung.00273.2017

62. Birch E.E., Khoury J.C., Berseth C.L., Castañeda Y.S., Couch J.M., Bean J., et al. The impact of early nutrition on incidence of allergic manifestations and common respiratory illnesses in children. J Pediatr. 2010; 156 (6): 902–6.e1. DOI: https://doi.org/10.1016/j.jpeds.2010.01.002

63. Chatchatee P., Lee W.S., Carrilho E., Kosuwon P., Simakachorn N., Yavuz Y., et al. Effects of growing-up milk supplemented with prebiotics and LCPUFAs on infections in young children. J Pediatr Gastroenterol Nutr. 2014; 58 (4): 428–37. DOI: https://doi.org/10.1097/MPG.0000000000000252

64. Venuta A., Spanò C., Laudizi L., Bettelli F., Beverelli A., Turchetto E. Essential fatty acids: the effects of dietary supplementation among children with recurrent respiratory infections. J Int Med Res. 1996; 24 (4): 325–30. DOI: https://doi.org/10.1177/030006059602400402

65. Malan L., Baumgartner J., Calder P.C., Zimmermann M.B., Smuts C.M. n-3 Long-chain PUFAs reduce respiratory morbidity caused by iron supplementation in iron-deficient South African schoolchildren: a randomized, double-blind, placebo-controlled intervention. Am J Clin Nutr. 2015; 101 (3): 668–79. DOI: https://doi.org/10.3945/ajcn.113.081208

66. Thomas T., Eilander A., Muthayya S., McKay S., Thankachan P., Theis W., et al. The effect of a 1-year multiple micronutrient or n-3 fatty acid fortified food intervention on morbidity in Indian school children. Eur J Clin Nutr. 2012; 66 (4): 452–8. DOI: https://doi.org/10.1038/ejcn.2011.178

67. Thienprasert A., Samuhaseneetoo S., Popplestone K., West A.L., Miles E.A., Calder P.C. Fish oil n-3 polyunsaturated fatty acids selectively affect plasma cytokines and decrease illness in Thai schoolchildren: a randomized, double-blind, placebo-controlled intervention trial. J Pediatr. 2009; 154 (3): 391–5. DOI: https://doi.org/10.1016/j.jpeds.2008.09.014

68. Imhoff-Kunsch B., Stein A.D., Martorell R., Parra-Cabrera S., Romieu I., Ramakrishnan U. Prenatal docosahexaenoic acid supplementation and infant morbidity: randomized controlled trial. Pediatrics. 2011; 128 (3): 505–12. DOI: https://doi.org/10.1542/peds.2010-1386

69. Bisgaard H., Stokholm J., Chawes B.L., Vissing N.H., Bjarnadóttir E., Schoos A.M., et al. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. N Engl J Med. 2016; 375 (26): 2530–9. DOI: https://doi.org/10.1056/NEJMoa1503734

70. Brustad N., Yang L., Chawes B.L., Stokholm J., Gürdeniz G., Bonnelykke K., et al. Fish oil and vitamin D supplementations in pregnancy protect against childhood croup. J Allergy Clin Immunol Pract. 2023; 11 (1): 315–21. DOI: https://doi.org/10.1016/j.jaip.2022.09.027

71. Costantini L., Molinari R., Farinon B., Merendino N. Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci. 2017; 18 (12): 2645. DOI: https://doi.org/10.3390/ijms18122645

72. Gromova O.A., Torshin I.Yu. Docosahexaenoic and eicosapentaenoic acid deficiency during pregnancy: association with congenital visual impairment in children. Voprosy ginekologii, akusherstva i perinatologii [Problems of Gynecology, Obstetrics and Perinatology]. 2021; 21 (5): 96–104. DOI: https://doi.org/10.20953/1726-1678-2022-5-96-104 (in Russian)

73. Sheludchenko V.M. Effects of docosahexaenoic acid on visual acuity, field of vision and electric retinitis biopotential in retinitis pigment. Vestnik oftal’mologii [Bulletin of Ophthalmology]. 2020; 136 (4): 296–9. DOI: https://doi.org/10.17116/oftalma2020136042296 (in Russian)

74. Gillespie T.C., Kim E.S., Grogan T., Tsui I., Chu A., Calkins K.L. Decreased levels of erythrocyte membrane arachidonic and docosahexaenoic acids are associated with retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2022; 63 (12): 23. DOI: https://doi.org/10.1167/iovs.63.12.23

75. Malamas A., Chranioti A., Tsakalidis C., Dimitrakos S.A., Mataftsi A. The omega-3 and retinopathy of prematurity relationship. Int J Ophthalmol. 2017; 10 (2): 300–5. DOI: https://doi.org/10.18240/ijo.2017.02.19

76. Fu Z. Yan W., Chen C.T., Nilsson A.K., Bull E., Allen W., et al. Omega-3/omega-6 long-chain fatty acid imbalance in phase I retinopathy of prematurity. Nutrients. 2022; 14 (7): 1333. DOI: https://doi.org/10.3390/nu14071333

77. Hellström A., Nilsson A.K., Wackernagel D., Pivodic A., Vanpee M., Sjöbom U., et al. Effect of enteral lipid supplement on severe retinopathy of prematurity: a randomized clinical trial. JAMA Pediatr. 2021; 175 (4): 359–67. DOI: https://doi.org/10.1001/jamapediatrics.2020.5653

78. Smithers L.G., Gibson R.A., McPhee A., Makrides M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial. Am J Clin Nutr. 2008; 88 (4): 1049–56. DOI: https://doi.org/10.1093/ajcn/88.4.1049

79. Molloy C.S., Stokes S., Makrides M., Collins C.T., Anderson P.J., Doyle L.W. Long-term effect of high-dose supplementation with DHA on visual function at school age in children born at <33 wk gestational age: results from a follow-up of a randomized controlled trial. Am J Clin Nutr. 2016; 103 (1): 268–75. DOI: https://doi.org/10.3945/ajcn.115.114710

80. Lundgren P., Jacobson L., Gränse L., Hard A.L., Sävman K., Hansen-Pupp I., et al. Visual outcome at 2.5 years of age in ω-3 and ω-6 long-chain polyunsaturated fatty acid supplemented preterm infants: a follow-up of a randomized controlled trial. Lancet Reg Health Eur. 2023; 32: 100696. DOI: https://doi.org/10.1016/j.lanepe.2023.100696

81. Thakur T., Mann S.K., Malhi N.K., Marwaha R. The role of omega-3 fatty acids in the treatment of depression in children and adolescents: a literature review. Cureus. 2023; 15 (9): e44584. DOI: https://doi.org/10.7759/cureus.44584

82. Podpeskar A., Crazzolara R., Kropshofer G., Hetzer B., Meister B., Müller T., et al. Omega-3 fatty acids and their role in pediatric cancer. Nutrients. 2021; 13 (6): 1800. DOI: https://doi.org/10.3390/nu13061800

83. Chang J.P., Tseng P.T., Zeng B.S., Chang C.H., Su H., Chou P.H., et al. Safety of supplementation of omega-3 polyunsaturated fatty acids: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2023; 14 (6): 1326–36. DOI: https://doi.org/10.1016/j.advnut.2023.08.003

84. Boyraz M., Pirgon Ö., Dündar B., Çekmez F., Hatipoğlu N. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease. J Clin Res Pediatr Endocrinol. 2015; 7 (2): 121–7. DOI: https://doi.org/10.4274/jcrpe.1749

85. Sandel P., Ma L., Wang H., Pasman E.A. You are what you eat: a review on dietary interventions for treating pediatric nonalcoholic fatty liver disease. Nutrients. 2023; 15 (15): 3350. DOI: https://doi.org/10.3390/nu15153350

86. Sasanfar B., Toorang F., Salehi-Abarghouei A. Effects of n-3 polyunsaturated fatty acid supplementation on appetite: a systematic review and meta-analysis of controlled clinical trials. Syst Rev. 2024; 13 (1): 44. DOI: https://doi.org/10.1186/s13643-023-02430-y

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»