To the content
2 . 2024

Genetics of sucrose metabolism disorders in different population groups

Abstract

The study of the genetic determinants of the disaccharidase activity opens up new prospects for improving diagnostics and choosing medical tactics in gastroenterology.

The aim of the study was to systematize the data on the role of the sucrase-isomaltase gene (SI) in regulating sucrose metabolism and the contribution of SI mutations to the prevalence of sucrose malabsorption disorders (sucrase-isomaltase deficiency, SID) and certain forms of enterological pathology in different population groups.

Material and methods. A review of the peer-reviewed scientific literature, mainly in the PubMed database (https://pubmed.ncbi.nlm.nih.gov) and eLibrary (https://elibrary.ru), was conducted using key words: carbohydrate malabsorption, sucrase, sucrase-isomaltase deficiency, sucrase-isomaltase SI gene. The search depth was not specified, but particular attention was paid to recent publications. The gnomAD database (https://www.ncbi.nlm.nih.gov/snp/rs781470490) was also used.

Results. According to the review results, 37 out of 150 known SI gene mutations have been confirmed to contribute to reduced sucrase activity or restricted sucrase production. The prevalence of point mutations in the SI gene is estimated at 0.0006%, but carrier rates of the SI delAG deletion (rs781470490), manifested as homozygosity in SID, are very high (5–21%) in indigenous populations of Arctic regions in East Asia and America. Medical-genetic research methods improve the accuracy of differential diagnosis of primary and secondary SID and other forms of disaccharide and polysaccharide malabsorption. The formation of databases on the prevalence of genetic determinants of sucrase-isomaltase insufficiency is a promising way to refine the epidemiology of SID. There is an increased (0.2–2.3%) risk of clinical manifestations of SID in homozygous carriers of the SI delAG mutation in the Chukotka, Kamchatka, and Northern Priochotye populations. Verification of reports on a less pronounced tendency to lipid metabolism disorders in SI delAG carriers compared with the control group is recommended.

Conclusion. Manifestations of mutant SI variants in the phenotype are associated with the presence of accompanying carbohydrate malabsorption variants and specific gut microbiota. The SI 15Phe variant (rs9290264) may contribute to the development of irritable bowel syndrome.

Keywords:malabsorption; carbohydrates; disaccharides; sucrase; sucrase-isomaltase deficiency; SI gene; irritable bowel syndrome; genetic variation

Funding. The study was carried out within the framework of the research project “Anthropology of Eurasian Populations” (АААА-А19-119013090163-2) of the Research Institute and Museum of Anthropology, Lomonosov Moscow State University, the framework of the Basic Research Program at HSE University, and the State tasks for the Research Center of Medical Genetics (Moscow) and the Institute of Biological Problems of the North (Magadan).

Conflict of interest. The authors declare no conflicts of interest.

Contribution. The concept of the study – Kozlov A.I.; collection, analysis of the material, writing and editing the text – all authors; approval of the final version of the article – Kozlov A.I.; responsibility for the integrity of all parts of the article – all authors.

For citation: Kozlov A.I., Malyarchuk B.A. Genetics of sucrose metabolism disorders in different population groups. Voprosy pitaniia [Problems of Nutrition]. 2024; 93 (2): 52–62. DOI: https://doi.org/10.33029/0042-8833-2024-93-2-52-62 (in Russian)

References

1. Tuck C.J., Biesiekierski J.R., Schmid-Grendelmeier P., Pohl D. Food intolerances. Nutrients. 2019; 11 (7): 1684. DOI: https://doi.org/10.3390/nu11071684

2. Frissora C.L., Rao S.S.C. Sucrose intolerance in adults with common functional gastrointestinal symptoms. Proc (Bayl Univ Med Cent). 2022; 35 (6): 790–3. DOI: https://doi.org/10.1080/08998280.2022.2114070

3. Deb C., Campion S., Derrick V., Ruiz V., Abomoelak B., Avdella A., et al. Sucrase-isomaltase gene variants in patients with abnormal sucrase activity and functional gastrointestinal disorders. J Pediatr Gastroenterol Nutr. 2021; 72 (1): 29–35. DOI: https://doi.org/10.1097/MPG.0000000000002852

4. Hauri H.P., Roth J., Sterchi E.E., Lentze M.J. Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency. Proc Natl Acad Sci USA. 1985; 82 (13): 4423–7. DOI: https://doi.org/10.1073/pnas.82.13.4423

5. Cohen S.A. The clinical consequences of sucrase-isomaltase deficiency. Mol Cell Pediatr. 2016; 3 (1): 5. DOI: https://doi.org/10.1186/s40348-015-0028-0

6. Sucrose malabsorption. Br Med J. 1977; 1 (6076): 1558–9. PMID: 871663; PMCID: PMC1607373.

7. Dbar S., Akhmadullina O., Sabelnikova E., Belostotskiy N., Parfenov A., Bykova S., et al. Patients with functional bowel disorder have disaccharidase deficiency: a single-center study from Russia. World J Clin Cases. 2021; 9 (17): 4178–87. DOI: https://doi.org/10.12998/wjcc.v9.i17.4178

8. De Leusse C., Roman C., Roquelaure B., Fabre A. Estimating the prevalence of congenital disaccharidase deficiencies using allele frequencies from gnomAD. Arch Pediatr. 2022; 29 (8): 599–603. DOI: https://doi.org/10.1016/j.arcped.2022.08.005

9. Naim H.Y., Roth J., Sterchi E.E., Lentze M., Milla P., Schmitz J., Hauri H.P. Sucrase-isomaltase deficiency in humans. Different mutations disrupt intracellular transport, processing, and function of an intestinal brush border enzyme. J Clin Invest. 1988; 82 (2): 667–79. DOI: https://doi.org/10.1172/JCI113646

10. Nichols B.L. Jr, Adams B., Roach C.M., Ma C.X., Baker S.S. Frequency of sucrase deficiency in mucosal biopsies. J Pediatr Gastroenterol Nutr. 2012; 55 (suppl 2): S28–30. DOI: https://doi.org/10.1097/01.mpg.0000421405.42386.64

11. Marcadier J.L., Boland M., Scott C.R., Issa K., Wu Z., McIntyre A.D., et al. Congenital sucrase-isomaltase deficiency: identification of a common Inuit founder mutation. Can Med Assoc J. 2015; 187 (2): 102–7. DOI: https://doi.org/10.1503/cmaj.140657

12. Senftleber N.K., Ramne S., Moltke I., Jorgensen M.E., Albrechtsen A., Hansen T., et al. Genetic loss of sucrase-isomaltase function: mechanisms, implications, and future perspectives. Appl Clin Genet. 2023; 16: 31–9. DOI: https://doi.org/10.2147/TACG.S401712

13. Treem W.R. Clinical aspects and treatment of congenital sucrase-isomaltase deficiency. J Pediatr Gastroenterol Nutr. 2012; 55 (suppl 2): S7–13. DOI: https://doi.org/10.1097/01.mpg.0000421401.57633.90

14. Viswanathan L., Rao S.S.C., Kennedy K., Sharma A., Yan Y., Jimenez E. Prevalence of disaccharidase deficiency in adults with unexplained gastrointestinal symptoms. J Neurogastroenterol Motil. 2020; 26 (3): 384–90. DOI: https://doi.org/10.5056/jnm19167

15. Viswanathan L., Rao S.S. Intestinal disaccharidase deficiency in adults: evaluation and treatment. Curr Gastroenterol Rep. 2023; 25 (6): 134–9. DOI: https://doi.org/10.1007/s11894-023-00870-z

16. Kim S.B., Calmet F.H., Garrido J., Garcia-Buitrago M.T., Moshiree B. Sucrase-isomaltase deficiency as a potential masquerader in irritable bowel syndrome. Dig Dis Sci. 2020; 65 (2): 534–40. DOI: https://doi.org/10.1007/s10620-019-05780-7

17. Nichols B.L., Avery S.E., Karnsakul W., Jahoor F., Sen P., Swallow D.M., et al. Congenital maltase-glucoamylase deficiency associated with lactase and sucrase deficiencies. J Pediatr Gastroenterol Nutr. 2002; 35 (4): 573–9. DOI: https://doi.org/10.1097/00005176-200210000-00022

18. Smith H., Romero B., Flood E., Boney A. The patient journey to diagnosis and treatment of congenital sucrase-isomaltase deficiency. Qual Life Res. 2021; 30 (8): 2329–38. DOI: https://doi.org/10.1007/s11136-021-02819-z

19. Naim H.Y., Heine M., Zimmer K.P. Congenital sucrase-isomaltase deficiency: heterogeneity of inheritance, trafficking, and function of an intestinal enzyme complex. J Pediatr Gastroenterol Nutr. 2012; 55 (suppl 2): S13–20. DOI: https://doi.org/10.1097/01.mpg.0000421402.57633.4b

20. Gasbarrini A., Corazza G.R., Gasbarrini G., Montalto M., Di Stefano M., Basilisco G., et al.; 1st Rome H2-Breath Testing Consensus Conference Working Group. Methodology and indications of H2-breath testing in gastrointestinal diseases: the Rome Consensus Conference. Aliment Pharmacol Ther. 2009; 29 (suppl 1): 1–49. DOI: https://doi.org/10.1111/j.1365-2036.2009.03951.x

21. Chumpitazi B.P., Lewis J., Cooper D., D’Amato M., Lim J., Gupta S., et al. Hypomorphic SI genetic variants are associated with childhood chronic loose stools. PLoS One. 2020; 15 (5): e0231891. DOI: https://doi.org/10.1371/journal.pone.023189

22. Gericke B., Amiri M., Scott C.R., Naim H.Y. Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (3): 817–26. DOI: https://doi.org/10.1016/j.bbadis.2016.12.017

23. Camilleri M., Zhernakova A., Bozzarelli I., D’Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol. 2022; 19 (11): 689–702. DOI: https://doi.org/10.1038/s41575-022-00662-2

24. Kozlov A.I., Malyarchuk B.A., Lavryashina M.B., Vershubskaya G.G. Sucrose malabsorption confirms the distinctive genetic history of the Inuit. Vestnik Moskovskogo Universiteta. Seriya 23: Antropologiya [Bulletin of Moscow University. Series 23. Anthropology]. 2023; (2): 82–91. DOI: https://doi.org/10.32521/2074-8132.2023.2.082-091 (in Russian)

25. El-Chammas K., Williams S.E., Miranda A. Disaccharidase deficiencies in children with chronic abdominal pain. JPEN J Parenter Enteral Nutr. 2017; 41 (3): 463–9. DOI: https://doi.org/10.1177/0148607115594675

26. Henström M., Diekmann L., Bonfiglio F., Hadizadeh F., Kuech E.M., von Köckritz-Blickwede M., et al. Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome. Gut. 2018; 67 (2): 263–70. DOI: https://doi.org/10.1136/gutjnl-2016-312456

27. Gudmand-Hoyer E., Fenger H.J., Kern-Hansen P., Madsen P.R. Sucrase deficiency in Greenland. Incidence and genetic aspects. Scand J Gastroenterol. 1987; 22 (1): 24–8. DOI: https://doi.org/10.3109/00365528708991851

28. Ellestad-Sayed J.J., Haworth J.C. Disaccharide consumption and malabsorption in Canadian Indians. Am J Clin Nutr. 1977; 30 (5): 698–703. DOI: https://doi.org/10.1093/ajcn/30.5.698

29. Kozlov A., Vershubsky G., Borinskaya S., Sokolova M., Nuvano V. Activity of disaccharidases in Arctic populations: evolutionary aspects. J Physiol Anthropol. 2005; 24 (4): 473–6. DOI: https://doi.org/10.2114/jpa.24.473

30. Garcia-Etxebarria K., Zheng T., Bonfiglio F., Bujanda L., Dlugosz A., Lindberg G., et al. Increased prevalence of rare sucrase-isomaltase pathogenic variants in irritable bowel syndrome patients. Clin Gastroenterol Hepatol. 2018; 16 (10): 1673–6. DOI: https://doi.org/10.1016/j.cgh.2018.01.047

31. Zheng T., Camargo-Tavares L., Bonfiglio F., Marques F.Z., Naim H.Y., D’Amato M. Rare hypomorphic sucrase isomaltase variants in relation to irritable bowel syndrome risk in UK Biobank. Gastroenterology. 2021; 161 (5): 1712–4. DOI: https://doi.org/10.1053/j.gastro.2021.06.063

32. Thingholm L., Rühlemann M., Wang J., Hübenthal M., Lieb W., Laudes M., et al. Sucrase-isomaltase 15Phe IBS risk variant in relation to dietary carbohydrates and faecal microbiota composition. Gut. 2019; 68: 177–8. DOI: https://doi.org/10.1136/gutjnl-2017-315841

33. Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581 (7809): 434–43. DOI: https://doi.org/https://doi.org/10.1038/s41586-020-2308-7 PMID: 32461654; PMCID: PMC7334197.

34. Malyarchuk B.A., Derenko M.V., Denisova G.A. The frequency of inactive sucrase-isomaltase variant in indigenous populations of Northeast Asia. Genetika [Genetics]. 2017; 53 (9): 1109–1111. DOI: https://doi.org/10.7868/S0016675817090090 (in Russian)

35. Andersen M., Skotte L., Jorsboe E., Polito R., Staeger F.F., Aldiss P., et al. Loss of sucrase-isomaltase function increases acetate levels and improves metabolic health in Greenlandic cohorts. Gastroenterology. 2022; 162 (4): 1171–82.e3. DOI: https://doi.org/10.1053/j.gastro.2021.12.236

36. Kozlov A.I. Nutritional and genetic risks of obesity development in indigenous northerners associated with the consumption of carbohydrate products. Voprosy pitaniya [Problems of Nutrition]. 2019; 88 (1): 5–16. DOI: https://doi.org/10.24411/0042-8833-2019-10001 (in Russian)

37. Kozlov A.I., Vershubskaya G.G., Lavryashina M.B., Ostroukhova I.O. The features of traditional nutrition in the gene pools of peoples with a forest-taiga type of nature management. Vestnik Moskovskogo universiteta. Seriya XXIII. Antropologiya [Bulletin of Moscow University. Series 23. Anthropology]. 2020; (3): 46–56. DOI: https://doi.org/10.32521/2074-8132.2020.3.046-056 (in Russian)

38. Kozlov A.I., Lavryashina M.B., Vershubskaya G.G., Balanovskaya E.V. The peculiarity of sub-ethnic groups of Nenets in genetic determinants of the metabolism of sucrose, trehalose and lactose. Vestnik Moskovskogo universiteta. Seriya XXIII. Antropologiya [Bulletin of Moscow University. Series 23. Anthropology]. 2022; (3): 63–71. DOI: https://doi.org/10.32521/2074-8132.2022.3.063-071 (in Russian)

39. Chiruvella V., Cheema A., Arshad H.M.S., Chan J.T., Yap J.E.L. Sucrase-isomaltase deficiency causing persistent bloating and diarrhea in an adult female. Cureus. 2021; 13 (4): e14349. DOI: https://doi.org/10.7759/cureus.14349

40. Foley A., Halmos E.P., Husein D.M., Fehily S.R., Löscher B.S., Franke A., et al. Adult sucrase-isomaltase deficiency masquerading as IBS. Gut. 2022; 71 (6): 1237–8. DOI: https://doi.org/10.1136/gutjnl-2021-326153

41. Senftleber N.K., Pedersen K.S., Jorgensen C.S., Pedersen H., Christensen M.M.B., Madsen E.K., et al. The effect of sucrase-isomaltase deficiency on metabolism, food intake and preferences: protocol for a dietary intervention study. Int J Circumpolar Health. 2023; 82 (1): 2178067. DOI: https://doi.org/10.1080/22423982.2023.2178067

42. Xiong R.-G., Zhou D.-D., Wu S.-X., Huang S.-Y., Saimaiti A., Yang Z.J., et al. Health benefits and side effects of short-chain fatty acids. Foods. 2022; 11 (18): 2863. DOI: https://doi.org/10.3390/foods11182863

43. Perry R., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L., et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016; 534 (7606): 213–7. DOI: https://doi.org/10.1038/nature18309

44. Ocobock C., Niclou A. Commentary – fat but fit…and cold? Potential evolutionary and environmental drivers of metabolically healthy obesity. Evol Med Public Health. 2022; 10 (1): 400–8. DOI: https://doi.org/10.1093/emph/eoac030

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»