To the content
2 . 2024

The impact of a competitive event and the efficacy of a lactic acid bacteria-fermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study

Abstract

Diet and exercise can alter the gut microbiota, but recent studies have assessed the impact of athletic competition on gut microbiota and host metabolites. We designed an open-label pilot study to investigate the effects of both official competition and a multi-strain lactic acid bacteria-fermented soymilk extract (LEX) on the gut microbiota in Japanese college endurance athletes. The analysis of fecal 16S rRNA metagenome and urinary metabolites was used to identify changes in gut microbiota composition and host metabolism. When the fecal microbiota were investigated before and after a race without using of a supplement (preobservation period), there was an increase in the phylum Firmicutes and decrease in Bacteroidetes. However, no changes in these phyla were seen before and after a race in those who consumed LEX. Before and after LEX ingestion, changes in urinary metabolites included a significant reduction in yeast and fungal markers, neurotransmitters, and mitochondrial metabolites including the TCA cycle. There were several correlations between urinary metabolites and the composition of fecal microbiota. For example, the level of tricarballylic acid was positively correlated with the composition ratio of phylum Firmicutes (Pearson’s r=0.66; p<0.01). The bacterial species Parabacteroides distasonis was also found to correlate moderately with several urinary metabolites. These findings suggest two possibilities. First, endurance athletes experience significant fluctuations in gut microbiota after a single competition. Second, LEX ingestion may improve yeast and fungal overgrowth in the gastrointestinal tract and enhancing mitochondrial metabolic function.

Data Availability Statement: Fastq files are deposited in the DDBJ database under the accession number DRA011638 with h BioProject ID PRJDB11304 and BioSample IDs SAMD00283406-SAMD00283454.

Funding. This work was supported by B&S Corporation Co. Ltd. The funder provided support in the form of salaries for authors (Fukuchi M., Yonekura K. and Sasuga Y.), but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest. The authors have read the journal’s policy and the authors of this manuscript have the following competing conflicts. The test article used for this study was manufactured and marketed by B&S Corporation Co. Ltd. Authors (Fukuchi M., Yonekura K. and Sasuga Y.) are paid employees of B&S Corporation Co. Ltd. There are no patents or products in development to declare. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Contribution. Data curation, formal analysis, investigation, resources, validation, visualization, writing – original draft – Fukuchi M.; conceptualization, funding acquisition, methodology, project administration, resources, supervision, validation, writing – review & editing – Sugita M.; data curation, investigation, resources, writing – review & editing – Banjo M.; conceptualization, funding acquisition, resources, writing – review & editing – Yonekura K.; conceptualization, formal analysis, funding acquisition, methodology, project administration, resources, supervision, validation, visualization, writing – original draft, writing – review & editing Sasuga Y.

For citation: Fukuchi M., Sugita M., Banjo M., Yonekura K., Sasuga Y. The impact of a competitive event and the efficacy of a lactic acid bacteriafermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study. PLoS ONE. 17 (1): e0262906. DOI: https://doi.org/10.1371/journal.pone.0262906

References

1. Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361: k2179. DOI: https://doi.org/10.1136/bmj.k2179 Epub 2018 Jun 15. PMID: 29899036; PubMed Central PMCID: PMC6000740.

2. Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.J., Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020; 12. DOI: https://doi.org/10.3390/nu12020381 Epub 2020 Feb 07. PMID: 32023943; PubMed Central PMCID: PMC7071260.

3. Durack J., Lynch S.V. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019; 216: 20–40. DOI: https://doi.org/10.1084/jem.20180448 Epub 2018 Oct 17. PMID: 30322864; PubMed Central PMCID: PMC6314516.

4. Kolodziejczyk A.A., Zheng D., Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019; 17: 742–53. DOI: https://doi.org/10.1038/s41579-019-0256-8 Epub 2019 Sept 22. PMID: 31541197.

5. Barton W., Penney N.C., Cronin O., Garcia-Perez I., Molloy M.G., Holmes E., et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018; 67: 625–33. DOI: https://doi.org/10.1136/gutjnl2016-313627 Epub 2017 Apr 01. PMID: 28360096.

6. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63: 1913–20. DOI: https://doi.org/10.1136/gutjnl-2013-306541 Epub 2014 Jul 16. PMID: 25021423.

7. Estaki M., Pither J., Baumeister P., Little J.P., Gill S.K., Ghosh S., et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016; 4: 42. DOI: https://doi.org/10.1186/s40168-016-0189-7 Epub 2016 Aug 10. PMID: 27502158; PubMed Central PMCID: PMC4976518.

8. Kulecka M., Fraczek B., Mikula M., Zeber-Lubecka N., Karczmarski J., Paziewska A., et al. The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut Microbes. 2020; 11 (5): 1374–84. DOI: https://doi.org/10.1080/19490976.2020.1758009 Epub 2020 May 14. PMID: 32401138; PubMed Central PMCID: PMC7524299.

9. Mohr A.E., Jager R., Carpenter K.C., Kerksick C.M., Purpura M., Townsend J.R., et al. The athletic gut microbiota. J Int Soc Sports Nutr. 2020; 17: 24. DOI: https://doi.org/10.1186/s12970-020-00353-w Epub 2020 May 14. PMID: 32398103; PubMed Central PMCID: PMC7218537.

10. Rawson E.S., Miles M.P., Larson-Meyer D.E. Dietary supplements for health, adaptation, and recovery in athletes. Int J Sport Nutr Exerc Metab. 2018; 28: 188–99. DOI: https://doi.org/10.1123/ijsnem.2017-0340 Epub 2018 Jan 19. PMID: 29345167.

11. Sivamaruthi B.S., Kesika P., Chaiyasut C. Effect of probiotics supplementations on health status of athletes. Int J Environ Res Public Health. 2019; 16. DOI: https://doi.org/10.3390/ijerph16224469 Epub 2019 Nov 27. PMID: 31766303; PubMed Central PMCID: PMC6888046.

12. Fukuchi M., Yasutake T., Matsumoto M., Mizuno R., Fujita K., Sasuga Y. Effect of lactic acid bacteria-fermented soy milk extract (LEX) on urinary 3-indoxyl sulfate in Japanese healthy adult women: an open-label pilot study. Nutr Diet Suppl. 2020; 12: 301–309. DOI: https://doi.org/10.2147/nds.S281180

13. Fukui M., Fujino T., Tsutsui K., Maruyama T., Yoshimura H., Shinohara T., et al. The tumor-preventing effect of a mixture of several lactic acid bacteria on 1,2-dimethylhydrazine-induced colon carcinogenesis in mice. Oncol Rep. 2001; 8: 1073–8. DOI: https://doi.org/10.3892/or.8.5.1073 Epub 2001 Aug 10. PMID: 11496319.

14. Takahashi S., Kawamura T., Kanda Y., Taniguchi T., Nishizawa T., Iiai T., et al. Activation of CD1d-independent NK1.1+ T cells in the large intestine by Lactobacilli. Immunol Lett. 2006; 102: 74–8. DOI: https://doi.org/10.1016/j.imlet.2005.07.003 Epub 2005 Aug 19. PMID: 16107279.

15. Mach N., Fuster-Botella D. Endurance exercise and gut microbiota: a review. J Sport Health Sci. 2017; 6: 179–97. DOI: https://doi.org/10.1016/j.jshs.2016.05.001 Epub 2017 Jun 01. PMID: 30356594; PubMed Central PMCID: PMC6188999.

16. Lamprecht M., Frauwallner A. Exercise, intestinal barrier dysfunction and probiotic supplementation. Med Sport Sci. 2012; 59: 47–56. DOI: https://doi.org/10.1159/000342169 Epub 2012 Oct 19. PMID: 23075554.

17. Shaw W., Kassen E., Chaves E. Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem. 1995; 41: 1094–104. Epub 1995 Aug 01. PMID: 7628083.

18. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W.S., et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011; 12 (6): R60. DOI: https://doi.org/10.1186/gb2011-12-6-r60 Epub 2011 Jun 28. PMID: 21702898; PubMed Central PMCID: PMC3218848.

19. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57: 289–300. DOI: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

20. Choi J.J., Eum S.Y., Rampersaud E., Daunert S., Abreu M.T., Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013; 121: 725–30. DOI: https://doi.org/10.1289/ehp.1306534 Epub 2013 May 02. PMID: 23632211; PubMed Central PMCID: PMC3672930.

21. Lambert J.E., Myslicki J.P., Bomhof M.R., Belke D.D., Shearer J., Reimer R.A. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015; 40: 749–52. DOI: https://doi.org/10.1139/apnm-2014-0452 Epub 2015 May 13. PMID: 25962839.

22. Evans C.C., LePard K.J., Kwak J.W., Stancukas M.C., Laskowski S., Dougherty J., et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014; 9: e92193. DOI: https://doi.org/10.1371/journal.pone.0092193 Epub 2014 Mar 29. PMID: 24670791; PubMed Central PMCID: PMC3966766.

23. Zhao X., Zhang Z., Hu B., Huang W., Yuan C., Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018; 9: 765. DOI: https://doi.org/10.3389/fmicb.2018.00765 Epub 2018. May 08. PMID: 29731746; PubMed Central PMCID: PMC5920010.

24. Shaw W., Baptist J., Geenens D. Immunodeficiency, gastrointestinal candidiasis, wheat and dairy sensitivity, abnormal urine arabinose, and autism: a case study. N Am J Med Sci. 2010; 3. DOI: https://doi.org/10. 7156/v3i1p001

25. Chen Q., Qiao Y., Xu X.J., You X., Tao Y. Urine organic acids as potential biomarkers for autism-spectrum disorder in Chinese children. Front Cell Neurosci. 2019; 13: 150. DOI: https://doi.org/10. 3389/fncel.2019.00150 Epub 2019 May 23. PMID: 31114480; PubMed Central PMCID: PMC6502994.

26. Kimura Y., Tani S., Hayashi A., Ohtani K., Fujioka S., Kawano T., et al. Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant-parasitic nematodes. Z Naturforsch C J Biosci. 2007; 62: 234–238. DOI: https://doi.org/10.1515/znc-2007-3-413 Epub 2007 Jun 05. PMID: 17542490.

27. Lord R.S., Bralley J.A. Clinical applications of urinary organic acids. Part 2. Dysbiosis markers. Altern Med Rev. 2008; 13: 292–306. Epub 2009 Jan 21. PMID: 19152477.

28. Stewart C.J., Nelson A., Scribbins D., Marrs E.C., Lanyon C., Perry J.D., et al. Bacterial and fungal viability in the preterm gut: NEC and sepsis. Arch Dis Child Fetal Neonatal Ed. 2013; 98: F298–303. DOI: https://doi.org/10.1136/archdischild-2012-302119 Epub 2013 Feb 22. PMID: 23426613.

29. Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017; 5: 153. DOI: https://doi.org/10.1186/s40168-017-0373-4 Epub 2017 Nov 28. PMID: 29178920; PubMed Central PMCID: PMC5702186.

30. Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013; 8: e66019. DOI: https://doi.org/10.1371/journal.pone.0066019 Epub 2013 Jun 27. PMID: 23799070; PubMed Central PMCID: PMC3684604.

31. Hoarau G., Mukherjee P.K., Gower-Rousseau C., Hager C., Chandra J., Retuerto M.A., et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio. 2016; 7. DOI: https://doi.org/10.1128/mBio.01250-16 Epub 2016 Sept 22. PMID: 27651359; PubMed Central PMCID: PMC5030358.

32. Luan C., Xie L., Yang X., Miao H., Lv N., Zhang R., et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 2015; 5: 7980. DOI: https://doi.org/10.1038/srep07980 Epub 2015 Jan 24. PMID: 25613490; PubMed Central PMCID: PMC4648387.

33. Sokol H., Leducq V., Aschard H., Pham H.P., Jegou S., Landman C., et al. Fungal microbiota dysbiosis in IBD. Gut. 2017; 66: 1039–48. DOI: https://doi.org/10.1136/gutjnl-2015-310746 Epub 2016 Feb 05. PMID: 26843508; PubMed Central PMCID: PMC5532459.

34. Kim Y.G., Udayanga K.G., Totsuka N., Weinberg J.B., Nunez G., Shibuya A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe. 2014; 15: 95–102. DOI: https://doi.org/10.1016/j.chom.2013.12.010 Epub 2014 Jan 21. PMID: 24439901; PubMed Central PMCID: PMC3957200.

35. Drummond M.J., Rasmussen B.B. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care. 2008; 11: 222–6. DOI: https://doi.org/10.1097/MCO.0b013e3282fa17fb Epub 2008 Apr 12. PMID: 18403916; PubMed Central PMCID: PMC5096790.

36. Kennedy D.O. B vitamins and the brain: mechanisms, dose and efficacy – a review. Nutrients. 2016; 8: 68. DOI: https://doi.org/10.3390/nu8020068 Epub 2016 Feb 02. PMID: 26828517; PubMed Central PMCID: PMC4772032.

37. Dollive S., Chen Y.Y., Grunberg S., Bittinger K., Hoffmann C., Vandivier L., et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS One. 2013; 8: e71806. DOI: https://doi.org/10.1371/journal.pone.0071806 Epub 2013 Aug 27. PMID: 23977147; PubMed Central PMCID: PMC3747063.

38. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464: 59–65. DOI: https://doi.org/10.1038/nature08821 Epub 2010 Mar 06. PMID: 20203603; PubMed Central PMCID: PMC3779803.

39. Ley R.E., Backhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005; 102: 11 070–5. DOI: https://doi.org/10.1073/pnas.0504978102 Epub 2005 Jul 22. PMID: 16033867; PubMed Central PMCID: PMC1176910.

40. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444: 1022–3. DOI: https://doi.org/10.1038/4441022a Epub 2006 Dec 22. PMID: 17183309.

41. Mariat D., Firmesse O., Levenez F., Guimaraes V., Sokol H., Dore J., et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9: 123. DOI: https://doi.org/10.1186/1471-2180-9-123 Epub 2009 Jun 11. PMID: 19508720; PubMed Central PMCID: PMC2702274.

42. Stojanov S., Berlec A., Strukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020; 8: 1751. DOI: https://doi.org/10.3390/microorganisms8111715 Epub 2020 Nov 04. PMID: 33139627; PubMed Central PMCID: PMC7692443.

43. Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K., et al. Population-level analysis of gut microbiome variation. Science. 2016; 352: 560–4. DOI: https://doi.org/10.1126/science.aad3503 Epub 2016 Apr 30. PMID: 27126039.

44. Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017; 114: 10 713–8. DOI: https://doi.org/10.1073/pnas.1711235114 Epub 2017 Sept 13. PMID: 28893978; PubMed Central PMCID: PMC5635915.

45. Del Chierico F., Nobili V., Vernocchi P., Russo A., De Stefanis C., Gnani D., et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017; 65: 451–64. DOI: https://doi.org/10.1002/hep.28572 Epub 2016 Mar 31. PMID: 27028797.

46. Verdam F.J., Fuentes S., de Jonge C., Zoetendal E.G., Erbil R., Greve J.W., et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 2013; 21: E607–15. DOI: https://doi.org/10.1002/oby.20466 Epub 2013 Mar 26. PMID: 23526699.

47. Zitomersky N.L., Atkinson B.J., Franklin S.W., Mitchell P.D., Snapper S.B., Comstock L.E., et al. Characterization of adherent Bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease. PLoS One. 2013; 8: e63686. DOI: https://doi.org/10.1371/journal.pone.0063686 Epub 2013 Jun 19. PMID: 23776434; PubMed Central PMCID: PMC3679120.

48. Cuffaro B., Assohoun A.L.W., Boutillier D., Sukenikova L., Desramaut J., Boudebbouze S., et al. In vitro characterization of gut microbiota-derived commensal strains: selection of Parabacteroides distasonis strains alleviating TNBS-induced colitis in mice. Cells. 2020; 9: 2104. DOI: https://doi.org/10.3390/cells9092104 Epub 2020 Sept 20. PMID: 32947881; PubMed Central PMCID: PMC7565435.

49. Wang K., Liao M., Zhou N., Bao L., Ma K., Zheng Z., et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019; 26: 222–35.e5. DOI: https://doi.org/10.1016/j.celrep.2018.12.028 Epub 2019 Jan 04. PMID: 30605678.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»