Genetics of lactase deficiency in Russia
AbstractThe ability to digest lactose in adulthood is caused by a genetic mutation that emerged following the domestication of cattle approximately 10 000 years ago. However, many adults retain primary lactase deficiency – the ancestral phenotype characterized by a decline in lactase enzyme activity after weaning. While the global prevalence of this condition is well-documented, reliable large-scale population data for Russia have been lacking so far. Microarray genotyping of genetic markers now enables high-quality, up-to-date research covering representative samples from diverse ethnic groups across Russia’s regions.
The purpose of the research was to compare the frequency of GG genotype in rs4988235 (13910 C/T) in the regulatory region (MCM6) of the lactase enzyme gene LCT, which determines the genetic risk of lactase insufficiency manifestation, in populations living in Russia and evaluate the differences between Russian regions.
Methods. The largest multi-ethnic genetic study on lactase deficiency in Russia was conducted on a sample of 24,439 individuals in 56 populations. The percentage of an individual belonging to each ethnic group was estimated by calculating the ancestral contribution to an individual’s genetic makeup. In addition, we calculated the frequency of the rs4988235 GG genotype in regions of Russia using information on the individual’s current location and place of birth.
Results. The prevalence of lactase deficiency by GG genotype rs4988235 in the Russian population was 45.2 and 42.8% (95% confidence interval 42.1–43.4) in the East Slavs group. The study revealed a significant variability (22.8–83.2%) in the regional prevalence of lactase deficiency by GG rs4988235 genotype. The dependence of the regional prevalence of lactase deficiency on the current place of residence is supported by the geographical features of the Russian territory and the history of pastoralism in different regions.
Conclusion. The findings may be useful for developing regional nutrition recommendations and optimising the Russian market for lactose-free and low-lactose products, and justify the importance of genetic testing for diagnosis, highlighting the interdisciplinary relevance of the study.
Keywords: lactase nonpersistence; lactase deficiency; lactose; rs4988235; LCT; 13910C/T
Funding. The study was not sponsored.
Conflict of interest. The authors declare no conflict of interest.
Contribution. Study concept and design – Kovalenko E.V., Vergasova E.O., Rakitko A.S., and Volokh O.I.; experimental data processing – Kovalenko E.V., Vergasova E.O., Rakitko A.S., Popov I.V., and Shoshina O.O.; visualization – Kovalenko E.V., Vergasova E.O., Sheludchenko M.S., and Shoshina O.O.; software development – Rakitko A.S., Popov I.V., and Vergasova E.O.; statistical analysis – Kovalenko E.V., Vergasova E.O., and Popov I.V.; writing the text – Kovalenko E.V., Sheludchenko M.S., Shoshina O.O., Vergasova E.O., Rakitko A.S., and Volokh O.I.; editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – all authors.
For citation: Kovalenko E.V., Vergasova E.O., Shoshina O.O., Sheludchenko M.S., Popov I.V., Kim A.A., Plotnikov N.A., Rakitko A.S., Volokh O.I. Genetics of lactase deficiency in Russia. Voprosy pitaniia [Problems of Nutrition]. 2025; 94 (2): 38–51. DOI: https://doi.org/10.33029/0042-8833-2025-94-2-38-51 (in Russian)
References
1. Szilagyi A., Ishayek N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients. 2018; 10 (12): 1994. DOI: https://doi.org/10.3390/nu10121994
2. Fassio F., Facioni M.S., Guagnini F. Lactose maldigestion, malabsorption, and intolerance: a comprehensive review with a focus on current management and future perspectives. Nutrients. 2018; 10 (11): 1599. DOI: https://doi.org/10.3390/nu10111599
3. Storhaug C.L., Fosse S.K., Fadnes L.T. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017; 2 (10): 738–46. DOI: https://doi.org/10.1016/S2468-1253(17)30154-1
4. Khabarova Y., Tornianen S., Tuomisto S., Järvelä I., Karhunen P., Isokoski M., et al. Lactase non-persistent genotype influences milk consumption and gastrointestinal symptoms in Northern Russians. BMC Gastroenterol. 2011; 11 (1): 124. DOI: https://doi.org/10.1186/1471-230X-11-124
5. Deng Y., Misselwitz B, Dai N, Fox M. Lactose intolerance in adults: Biological mechanism and dietary management. Nutrients. 2015; 7 (9): 8020–35. DOI: https://doi.org/10.3390/nu7095380
6. Leseva M.N., Grand R.J., Klett H., Boerries M., Busch H., Binder A.M., et al. Differences in DNA methylation and functional expression in lactase persistent and non-persistent individuals. Sci Rep. 2018; 8 (1): 5649. DOI: https://doi.org/10.1038/s41598-018-23957-4
7. Cohen C.E., Swallow D.M., Walker C. The molecular basis of lactase persistence: linking genetics and epigenetics. Ann Hum Genet. 2024; Aug 22. Online ahead of print. DOI: https://doi.org/10.1111/ahg.12575
8. Ségurel L., Bon C. On the evolution of lactase persistence in humans. Ann Rev Genomics Hum Genet. 2017; 18 (1): 297–319. DOI: https://doi.org/10.1146/annurev-genom-091416-035340
9. Segurel L., Guarino-Vignon P., Marchi N., Lafosse S., Laurent R., Bon C., et al. Why and when was lactase persistence selected for? Insights from Central Asian herders and ancient DNA. PLoS Biol. 2020; 8 (6): e3000742. DOI: https://doi.org/10.1371/journal.pbio.3000742
10. Evershed R.P., Davey Smith G., Roffet-Salque M., Timpson A., Diekmann Y., Lyon M.S., et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature. 2022; 608 (7922): 336–45. DOI: https://doi.org/10.1038/s41586-022-05010-7
11. Anguita-Ruiz A., Aguilera C.M., Gil Á. Genetics of lactose intolerance: an updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients. 2020; 12 (9): 2689. DOI: https://doi.org/10.3390/nu12092689
12. Burger J., Link V, Blöcher J., Schulz A., Sell C., Pochon Z., et al. Low prevalence of lactase persistence in bronze age Europe indicates ongoing strong selection over the last 3,000 years. Curr Biol. 2020; 30 (21): 4307–15.e13. DOI: https://doi.org/10.1016/j.cub.2020.08.033
13. Porzi M., Burton-Pimentel K.J., Walther B., Vergères G. Development of personalized nutrition: applications in lactose intolerance diagnosis and management. Nutrients. 2021; 13 (5): 1503. DOI: https://doi.org/10.3390/nu13051503
14. Suri S., Kumar V., Prasad R., Tanwar B., Goyal A., Kaur S., et al. Considerations for development of lactose-free food. J Nutr Intermediary Metab. 2019; 15: 27–34. DOI: https://doi.org/10.1016/j.jnim.2018.11.003
15. Katoch G.K., Nain N., Kaur S., Rasane P. Lactose intolerance and its dietary management: an update. J Am Nutr Assoc. 2021; 41 (4): 424–34. DOI: https://doi.org/10.1080/07315724.2021.1891587
16. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on lactose thresholds in lactose intolerance and galactosaemia. EFSA J. 2010; 8 (9): 1777. DOI: https://doi.org/10.2903/j.efsa.2010.1777
17. Shaukat A., Levitt M.D., Taylor B.C., MacDonald R., Shamliyan T.A., Kane R.L., et al. Systematic review: effective management strategies for lactose intolerance. Ann Intern Med. 2010; 152 (12): 797–803. DOI: https://doi.org/10.7326/0003-4819-152-12-201006150-00241
18. Forsgard R.A. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am J Clin Nutr. 2019; 110 (2): 273–9. DOI: https://doi.org/10.1093/ajcn/nqz104
19. Viswanathan L., Rao S.S. Intestinal disaccharidase deficiency in adults: evaluation and treatment. Curr Gastroenterol Rep. 2023; 25 (6): 134–9. DOI: https://doi.org/10.1007/s11894-023-00870-z
20. Leis R., de Castro M.J., de Lamas C., Picáns R., Couce M.L. Effects of prebiotic and probiotic supplementation on lactase deficiency and lactose intolerance: a systematic review of controlled trials. Nutrients. 2020; 12 (5): 1487. DOI: https://doi.org/10.3390/nu12051487
21. de Oliveira L.S., Wendt G.W., Crestani A.P.J., Casaril K.B.P.B. The use of probiotics and prebiotics can enable the ingestion of dairy products by lactose intolerant individuals. Clin Nutr. 2022; 41 (12): 2644–50. DOI: https://doi.org/10.1016/j.clnu.2022.10.003
22. Angima G., Qu Y., Park S.H., Dallas D.C. Prebiotic strategies to manage lactose intolerance symptoms. Nutrients. 2024; 16 (7): 1002. DOI: https://doi.org/10.3390/nu16071002
23. Muehlhoff E. Milk and Dairy Products in Human Nutrition. Rome: Food and Agriculture Organization of the United Nations (FAO), 2013: 404 p. ISBN: 9789251078631.
24. Misselwitz B., Pohl D., Frühauf H., Fried M., Vavricka S.R., Fox M. Lactose malabsorption and intolerance: pathogenesis, diagnosis and treatment. United European Gastroenterol J. 2013; 1 (3): 151–9. DOI: https://doi.org/10.1177/2050640613484463
25. Kongpharm K., Nakklay P., Kongtong C., Tanapumchai P., Prapkree L., Rueangsri N., et al. Impacts of people at-risk of either cow milk allergies or lactose intolerance on their daily calcium intake and bone mineral density. Front Nutr. 2024; 11: 1421275. DOI: https://doi.org/10.3389/fnut.2024.1421275
25. Kongpharm K., Nakklay P., Kongtong C., Tanapumchai P., Prapkree L., Rueangsri N., et al. Impacts of people at-risk of either cow milk allergies or lactose intolerance on their daily calcium intake and bone mineral density. Front Nutr. 2024; 11: 1421275. DOI: https://doi.org/10.3389/fnut.2024.1421275
26. Food and Agriculture Organization of the United Nations & World Health Organization. Sustainable Healthy Diets: Guiding Principles. Rome: FAO & WHO, 2019: 37 p. ISBN: 978-92-5-131875-1 (FAO), ISBN: 978-92-4-151664-8 (WHO).
27. Ministry of Food, Agriculture and Fisheries. The Official Dietary Guidelines – Good for Health and Climate. 2nd ed. The Danish Veterinary and Food Administration, 2024. ISBN: 978-87-93147-66-9.
28. U.S. Department of Agriculture & U.S. Department of Health and Human Service. Dietary Guidelines for Americans 2020–2025. 9th ed. Washington, DC: US Government Publishing Office, 2020. ISBN: 9781998109654.
29. Hu F., Cheung L., Otis B., Oliveira N., Musicus A. Healthy Living Guide 2023/2024: a Digest on Healthy Eating and Healthy Living. Department of Nutrition at the Harvard T.H. Chan School of Public Health, 2024. https://nutritionsource.hsph.harvard.edu/wp-content/uploads/2024/01/HLGuide2023-2024.pdf (Accessed 7 march 2025)
30. Public Health England, Welsh Government, Food Standards Scotland, & Food Standards Agency in Northern Ireland. The Eatwell Guide. Public Health England, 2018. URL: https://www.gov.uk/government/publications/the-eatwell-guide (date of access March 07, 2025).
31. Kozlov A.I., Lavryashina M.B., Vershubskaya G.G., Balanovskaya E.V. The peculiarity of sub-ethnic groups of Nenets in genetic determinants of the metabolism of sucrose, trehalose and lactose. Vestnik Moskovskogo universiteta. Seriya XXIII. Antropologiya [Bulletin of Moscow University. Series XXIII. Anthropology]. 2022; (3): 63–71. DOI: https://doi.org/10.33029/0042-8833-2024-93-2-52-62 (in Russian)
32. Kozlov A.I. Polymorphism of the genetic determinants of bone mineral metabolism in various groups of the Komi people. Vestnik arkheologii, antropologii i etnografii [Bulletin of Archeology, Anthropology and Ethnography]. 2021; 4 (55): 151–61. DOI: https://doi.org/10.20874/2071-0437-2021-55-4-12 (in Russian)
33. Kovalenko E., Vergasova E., Shoshina O., Popov I., Ilinskaya A., Kim A., et al. Lactase deficiency in Russia: multiethnic genetic study. Eur J Clin Nutr. 2023; 77: 803–10. DOI: https://doi.org/10.1038/s41430-023-01294-8
34. McAuliffe M., Oucho L.A. (eds). World Migration Report 2024. Geneva: International Organization for Migration (IOM), 2024: 384 p. ISBN: 978-92-9268-598-0.
35. Yunusbayev B., Metspalu M., Jarve M., Kutuev I., Rootsi S., Metspalu E., et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012; 29 (1): 359–65. DOI: https://doi.org/10.1093/molbev/msr221
36. Jeong C., Balanovsky O., Lukianova E., Kahbatkyzy N., Flegontov P. The genetic history of admixture across inner Eurasia. Nat Ecol Evol. 2019; 3 (6): 966–76. DOI: https://doi.org/10.1038/s41559-019-0878-2
37. Németh S., Kriegshäuser G., Hovhannesyan K., Hayrapetyan H., Oberkanins C., Sarkisian T. Very low frequency of the lactase persistence allele LCT-13910T in the Armenian population. Ann Hum Biol. 2022; 49 (5–6): 260–2. DOI: https://doi.org/10.1080/03014460.2022.2126887
38. Pugach I., Matveev R., Spitsyn V., Makarov S., Novgorodov I., Osakovsky V. The complex admixture history and recent southern origins of Siberian populations. Mol Biol Evol. 2016; 33 (7): 1777–95. DOI: https://doi.org/10.1093/molbev/msw055
39. Fedorova S.A, Reidla M., Metspalu E., Metspalu M., Rootsi S., Tambets K., et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol. 2013; 13 (1): 127. DOI: https://doi.org/10.1186/1471-2148-13-127
40. Ushnitskiy V.V. The problem of the Sakha people’s ethnogenesis: a new approach. Journal of Siberian Federal University. Humanities & Social Sciences. 2016; 8 (9): 1822–40. URL: https://elib.sfu-kras.ru/handle/2311/20532
41. Crubézy E., Amory S., Keyser C., Bouakaze C., Bodner M., Gibert M., et al. Human evolution in Siberia: from frozen bodies to ancient DNA. BMC Evol Biol. 2010; 10 (1): 25. DOI: https://doi.org/10.1186/1471-2148-10-25
42. Naumov A., Akimova V., Sidorova D., Topnikov M. Agriculture and land use in the North of Russia: case study of Karelia and Yakutia. Open Geosci. 2020; 12 (1): 1497–511. DOI: https://doi.org/10.1515/geo-2020-0210
43. Musaev A., Sadykova S., Anambayeva A., Saizhanova M., Balkanay G., Kolbaev M. Mare’s milk: composition, properties, and application in medicine. Arch Razi Inst. 2021; 76 (4): 1125–35. DOI: https://doi.org/10.22092/ari.2021.355834.1725
44. Kozlov A.I. Carbohydrate-related nutritional and genetic risks of obesity for indigenous northerners. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (1): 5–16. DOI: https://doi.org/10.24411/0042-8833-2019-10001 (in Russian)
45. Rosstat. Household food consumption [Electronic resource]. 2024. URL: https://rosstat.gov.ru/compendium/document/13292 (дата обращения: 07.03.2025).
46. Minzdrav RF. Rational norms of food consumption [Electronic resource]. 2016. URL: https://minzdrav.gov.ru/opendata/7707778246-normpotrebproduct/visual (date of access March 07, 2025).
47. Borinskaya S.A., Rebrikov D.V., Nefedova V.V., Kofiadi I.A., Sokolova M.V., Kolchina E.V. Molecular diagnosis and frequencies of primary hypolactasia in populations of Russia and neighboring countries. Mol Biol. 2006; 40 (6): 931–5. DOI: https://doi.org/10.1134/S0026893306060124
48. Stouten K., Wolfhagen F., Castel R., van de Werken M., Klerks J., Verheijen F., et al. Testing for lactase non-persistence in a Dutch population: genotyping versus the hydrogen breath test. Ann Clin Biochem. 2023; 60 (4): 243–8. DOI: https://doi.org/10.1177/00045632231159288
49. Nardone O.M., Manfellotto F., D’Onofrio C., Rocco A., Annona G., Sasso F., et al. Lactose intolerance assessed by analysis of genetic polymorphism, breath test and symptoms in patients with inflammatory bowel disease. Nutrients. 2021; 13 (4): 1290. DOI: https://doi.org/10.3390/nu13041290
50. Shrestha A., Barnett M.P.G., Perry J.K., Cameron-Smith D., Milan A.M. Evaluation of breath, plasma, and urinary markers of lactose malabsorption to diagnose lactase non-persistence following lactose or milk ingestion. BMC Gastroenterol. 2020; 20 (1): 204. DOI: https://doi.org/10.1186/s12876-020-01352-6