References
1. Bay M.L., Pedersen B.K. Muscle-organ crosstalk: focus on immunometabolism. Front Physiol. 2020; 11: 567881. DOI: https://doi.org/10.3389/fphys.2020.567881
2. Padilha C.S., Von Ah Morano A.E., Krüger K., Rosa-Neto J.C., Lira F.S. The growing field of immunometabolism and exercise: key findings in the last 5 years. J Cell Physiol. 2022; 237 (11): 4001–20. DOI: https://doi.org/10.1002/jcp.30866
3. Suzuki K. Recent progress in applicability of exercise immunology and inflammation research to sports nutrition. Nutrients. 2021; 13: 4299. DOI: https://doi.org/10.3390/nu13124299
4. Wahl P., Mathes S., Bloch W., Zimmer P. Acute impact of recovery on the restoration of cellular immunological homeostasis. Int J Sports Med. 2020; 41: 12–20. DOI: https://doi.org/10.1055/a-1015-0453
5. Kozlov V.A., Kudaeva О.Т. The review contains literature data concerning the influence of physical activity on innate and acquired immunity. Possible reasons and mechanisms of exercise stress influence on immunity are discussed. Meditsinskaya immunologiya [Medical Immunology]. 2002; 4 (3): 427–38. (in Russian)
6. Pal’tsyn A.A. Myokines. Pathologicheskaya fiziologiya i experimental’naya terapiya [Pathological Physiology and Experimental Therapy]. 2020; 64 (1); 135–41. DOI: https://doi.org/10.25557/0031-2991-2020-01-135-141 (in Russian)
7. Picó C., Palou M., Pomar C.A., Rodríguez A.M., Palou A. Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord. 2021; 23: 13–30. DOI: https://doi.org/10.1007/s11154-021-09687-5
8. Romantsova T.I., Volkova G.E. Leptin and ghrelin: antagonism and interaction in the regulation of energy metabolism. Ozhirenie i metabolism [Obesity and Metabolism]. 2005; 2 (2): 2–8. DOI: https://doi.org/10.14341/2071-8713-4924 (in Russian)
9. Gajewska A., Strzelecki D., Gawlik-Kotelnicka O. Ghrelin as a biomarker of «immunometabolic depression» and its connection with dysbiosis. Nutrients. 2023; 15 (18): 3960. DOI: https://doi.org/10.3390/nu15183960
10. Todorova V., Ivanov K., Delattre C., Nalbantova V., Karcheva-Bahchevanska D., Ivanova S. Plant adaptogens – history and future perspectives. Nutrients. 2021; 13 (8): 2861. DOI: https://doi.org/10.3390/nu13082861
11. Yu S.E., Mwesige B., Yi Y.S., Yoo B.C. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res. 2019; 43 (3): 361– 7. DOI: https://doi.org/10.1016/j.jgr.2018.09.001
12. He Y., Hu Z., Li A., Zhu Z., Yang N., Ying Z. et al. Recent advances in biotransformation of saponins. Molecules. 2019; 24 (13): 2365. DOI: https://doi.org/10.3390/molecules2413236
13. He B., Chen D., Zhang X., Yang R., Yang Y., Chen P., et al. Oxidative stress and ginsenosides: an update on the molecular mechanisms. Oxid Med Cell Longev. 2022; 2022): 9299574. DOI: https://doi.org/10.1155/2022/9299574
14. Kim J.N., Kim D.H., Jo S., Cho M.J., Cho Y.R., Lee Y.J., et al. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med. 2022; 54 (1): 1–11. DOI: https://doi.org/10.1038/s12276-022-00724-0
15. He L.X., Ren J.W, Liu R., Chen Q.H., Zhao J., Wu X., et al. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion. Food Funct. 2017; 8 (10): 3523–32. DOI: https://doi.org/10.1039/c7fo00957g
16. Um Y., Eo H.J., Kim H.J., Kim K., Jeon K.S., Jeong J.B. Wild simulated ginseng activates mouse macrophage, RAW264.7 cells through TRL2/4-dependent activation of MAPK, NF-κB and PI3K/AKT pathways. J Ethnopharmacol. 2020; 263: 113218. DOI: https://doi.org/10.1016/j.jep.2020.113218
17. Lim T.G., Jang Mi, Cho C.W., Hong H.D., Kim K.T., Lee S.Y., et al. White ginseng extract induces immunomodulatory effects via the MKK4-JNK pathway. Food Sci Biotechnol. 2016; 25: 1737–44. DOI: https://doi.org/10.1007/s10068-016-0265-6
18. Trushina E.N., Mustafina O.K., Aksenov I.V., Krasutsky A.G., Tutelyan V.A., Nikityuk D.B. Protective action of ginseng root extract on myofibril apoptosis and immune response in rats after exhausting physical exercise. Part I. Effect of ginseng root extract on myofibril apoptosis in rats’ gastrocnemius muscle. Voprosy pitaniia [Problems of Nutrition]. 2025; 94 (1): 111–7. DOI: https://doi.org/10.33029/0042-8833-2025-94-1-111-117 (in Russian)
19. Trushina E.N., Mustafina O.K., Aksenov I.V., Krasutsky A.G., Nikityuk D.B., Tutelyan V.A. Bioactive compounds anthocyanins as a factor in the nutritional recovery of the body’s adaptive potential after intense physical activity in the experiment: assessment of immunological and hematological indicators of adaptation. Voprosy pitaniia [Problems of Nutrition]. 2023; 92 (1): 6–15. DOI: https://doi.org/10.33029/0042-8833-2023-92-1-6-15 (in Russian)
20. Malsagova K.A., Astrelina T.A., Balakin E.I., Kobzeva I.V., Adoeva E.Ya., Yurku K.A. et al. Influence of Sports Training in Foothills on the Professional Athlete’s Immunity. Sports (Basel). 2023; 11 (2):30. DOI: https://doi.org/10.3390/sports11020030
21. Schlagheck M.L., Walzik D., Joisten N., Koliamitra C., Hardt L., Metcalfe A.J., et al. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur J Haematol. 2020; 105 (1): 75–84. DOI: https://doi.org/10.1111/ejh.13412
22. Yang W., Hu P. Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat. 2018; 7 (13): 25–32. DOI: https://doi.org/10.1016/j.jot.2018.01.002
23. Guo Y.T., Peng Y.C., Yen H.Y., Wu J.C., Hou W.H. Effects of probiotic supplementation on immune and inflammatory markers in athletes: a meta-analysis of randomized clinical trials. Medicina (Kaunas). 2022; 58 (9): 1188. DOI: https://doi.org/10.3390/medicina58091188
24. Shek P.N., Sabiston B.H., Buguet A., Radomski M.W. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med. 1995; 16 (7): 466–74. DOI: https://doi.org/10.1055/s-2007-973039
25. Simpson R.J., Boßlau T.K., Weyh C.W., Niemiro G.M., Batatinha H., Smith K.A., et al. Exercise and adrenergic regulation of immunity. Brain Behav Immun. 2021; 97: 303–18. DOI: https://doi.org/10.1016/j.bbi.2021.07.010
26. Graff R.M., Kunz H.E., Agha N.H., Baker F.L., Laughlin M., Bigley A.B., et al. Agha/β 2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun. 2018; 74: 143–53. DOI: https://doi.org/10.1016/j.bbi.2018.08.017
27. Kurowski M., Seys S., Bonini M., Del Giacco S., Delgado L., Diamant Z., et al. Physical exercise, immune response, and susceptibility to infections-current knowledge and growing research areas. Allergy. 2022; 77 (9): 2653–64. DOI: https://doi.org/10.1111/all.15328
28. Rooney B.V., Bigley A.B., LaVoy E.C., Laughlin M., Pedlar C., Simpson R.J. Lymphocytes and monocytes egress peripheral blood within minutes after cessation of steady state exercise: a detailed temporal analysis of leukocyte extravasation. Physiol Behav. 2018; 194: 260–7. DOI: https://doi.org/10.1016/j.physbeh.2018.06.008
29. Llavero F., Alejo L.B., Fiuza-Luces C., López Soto A., Valenzuela P.L., Castillo-García A., et al. Exercise training effects on natural killer cells: a preliminary proteomics and systems biology approach. Exerc Immunol Rev. 2021; 27: 125–41. PMID: 33965896.
30. Pal A., Schneider J., Schlüter K., Steindorf K., Wiskemann J., Rosenberger F., et al. Different endurance exercises modulate NK cell cytotoxic and inhibiting receptors. Eur J Appl Physiol. 2021; 121 (12): 3379–87. DOI: https://doi.org/10.1007/s00421-021-04735-z
31. Akinfieva O.V., Bubnova L.N., Bessmel’tsev S.S NKT cells: characteristic features and functional significance in the immune response regulation. Onkogematologiya [Oncohemotology]. 2010; (4): 39–47. (in Russian)
32. Suzuki K., Hayashida H. Effect of exercise intensity on cell-mediated immunity. Sports (Basel). 2021; 9 (1): 8. DOI: https://doi.org/10.3390/sports9010008
33. Anderson K.C., Zieff G., Paterson C., Stoner L., Weltman A., Allen J.D. The effect of acute exercise on pre-prandial ghrelin levels in healthy adults: a systematic review and meta-analysis. Peptides. 2021; 145: 170625. DOI: https://doi.org/10.1016/j.peptides.2021.170625
34. Tacad D.K.M., Tovar A.P., Richardson C.E., Horn W.F., Krishnan G.P., Keim N.L., et al. Satiety associated with calorie restriction and time-restricted feeding: peripheral hormones. Adv Nutr. 2022; 13 (3): 792–820. DOI: https://doi.org/10.1093/advances/nmac014
35. da Silva Pereira J.A., da Silva F.C., de Moraes-Vieira P. The impact of ghrelin in metabolic diseases: an immune perspective. J Diabetes Res. 2017; 2017: 4527980. DOI: https://doi.org/10.1155/2017/4527980
36. Lim W.C., Shin E.J., Lim T.G., Choi J.W., Song N.E., Hong H.D., et al. Ginsenoside Rf enhances exercise endurance by stimulating myoblast differentiation and mitochondrial biogenesis in C2C12 myotubes and ICR mice. Foods. 2022; 11 (12): 1709. DOI: https://doi.org/10.3390/foods11121709
37. Lee S.Y., Jeong J.J., Eun S.H., Kim D.H. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol. 2015; 762: 333–43. DOI: https://doi.org/10.1016/j.ejphar.2015.06.011
38. Jung J.H., Kang T.K., Oh J.H., Jeong J.U., Ko K.P., Kim S.T. The effect of Korean red ginseng on symptoms and inflammation in patients with allergic rhinitis. Ear Nose Throat J. 2020; 100: S712–9. DOI: https://doi.org/10.1177/0145561320907172
39. Liu T., Wang D., Zhou X., Song J., Yang Z., Shi C., et al. Study on the mechanism of American ginseng extract for treating type 2 diabetes mellitus based on metabolomics. Front Pharmacol. 2022; 2 (13): 960050. DOI: https://doi.org/10.3389/fphar.2022.960050