References
1. Chew N.W.S., Ng C.H., Tan D.J.H., Kong G., Lin C., Chin Y.H., et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023; 35 (3): 414–28.e3. DOI: https://doi.org/10.1016/j.cmet.2023.02.003
2. Quek J., Chan K.E., Wong Z.Y., Tan C., Tan B., Lim W.H., et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023; 8 (1): 20–30. DOI: https://doi.org/10.1016/S2468-1253(22)00317-X
3. Welsh A., Hammad M., Piña I.L., Kulinski J. Obesity and cardiovascular health. Eur J Prev Cardiol. 2024; 31 (8): 1026–35. DOI: https://doi.org/10.1093/eurjpc/zwae025
4. Gómez-Zorita S., Trepiana J., González-Arceo M., Aguirre L., Milton-Laskibar I., González M. et al. Anti-obesity effects of microalgae. Int J Mol Sci. 2019; 21 (1): 41. DOI: https://doi.org/10.3390/ijms21010041
5. Aissaoui O., Amiali M., Bouzid N., Belkacemi K., Bitam A. Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm Biol. 2017; 55 (1): 1304–12. DOI: https://doi.org/10.1080/13880209.2017.1300820
6. Sadek K.M., Lebda M.A., Nasr S.M., Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother. 2017; 92: 1085–94. DOI: https://doi.org/10.1016/j.biopha.2017.06.023
7. Pankaj P.P. Cell suspension of Spirulina platensis partially attenuates alloxan induced alterations in carbohydrate and lipid metabolism in diabetic mice. Int J Pharm Sci Res. 2016; 7: 2805–12. DOI: https://doi.org/10.13040/IJPSR.0975-8232.7(7).2805-2812
8. Ou Y., Lin L., Pan Q., Yang X., Cheng X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environ Toxicol Pharmacol. 2012; 34 (3): 721–6. DOI: https://doi.org/10.1016/j.etap.2012.09.016
9. El-Sayed E.M., Hikal M.S., Khair B.E., El-Ghobashy R.E., El-Assar A.M. Hypoglycemic and hypolipidemic effects of Spirulina platensis, phycocyanin, phycocyanopeptide and phycocyanobilin on male diabetic rats. Arab Univ J Agric Sci. 2018; 26 (2A): 775–861. DOI: https://doi.org/10.21608/ajs.2018.28365
10. Nasirian F., Dadkhah M., Moradi-Kor N., Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes. 2018; 11: 375–80. DOI: https://doi.org/10.2147/DMSO.S172104
11. Cacciola N.A., De Cicco P., Milanović M., Milovanović I., Mišan A., Kojić D., et al. Role of Arthrospira platensis in preventing and treating high-fat diet-induced hypercholesterolemia in adult rats. Nutrients. 2024; 16 (12): 1827. DOI: https://doi.org/10.3390/nu16121827
12. Drapkina O.M., Kravchenko A.Ya., Budnevsky A.V., Kontsevaya A.V., Ryaskina M.S., Chernik T.A. Bilirubin and cardiovascular risk. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2021; 26 (9): 116–21. DOI: https://doi.org/10.15829/1560-4071-2021-4511 (in Russian)
13. Kim S.Y., Park S.C. Physiological antioxidative network of the bilirubin system in aging and age-related diseases. Front Pharmacol. 2012; 3: 45. DOI: https://doi.org/10.3389/fphar.2012.00045
14. Xiao C.W., Hendry A. Hypolipidemic effects of soy protein and isoflavones in the prevention of non-alcoholic fatty liver disease – a review. Plant Foods Hum Nutr. 2022; 77 (3): 319–28. DOI: https://doi.org/10.1007/s11130-022-00984-1
15. Hakkak R., Korourian S., Li W., Spray B., Twaddle N.C., Randolph C.E., et al. Dietary soy protein reverses obesity-induced liver steatosis and alters fecal microbial composition independent of isoflavone level. Front Nutr. 2024; 11: 1487859. DOI: https://doi.org/10.3389/fnut.2024.1487859
16. Kozaczek M., Bottje W., Kong B., Dridi S., Albataineh D., Lassiter K., et al. Long-term soy protein isolate consumption reduces liver steatosis through changes in global transcriptomics in obese Zucker rats. Front Nutr. 2020; 7: 607970. DOI: https://doi.org/10.3389/fnut.2020.607970
17. Jiang S., Ji S., Tang X., Wang T., Wang H., Meng X. A comparison study on the therapeutic effect of high protein diets based on pork protein versus soybean protein on obese mice. Foods. 2022; 11 (9): 1227. DOI: https://doi.org/10.3390/foods11091227
18. Biryulina N.A., Zorin S.N., Mazo V.K. Phycocyanin concentrates from Arthrospira platensis biomass: technology and composition characterization. Aktual’naya biotekhnologiya [Actual Biotechnology]. 2022; (1): 187–9. URL: https://elibrary.ru/item.asp?id=50113924 EDN: XPGCUC. (in Russian)
19. Minniti M.E., Ahmed O., Pedrelli M. Enzymatic quantification of liver lipids after Folch extraction. Methods Mol Biol. 2020; 2164: 101–8. DOI: https://doi.org/10.1007/978-1-0716-0704-6_11
20. Oda E. A decrease in total bilirubin predicted hyper-LDL cholesterolemia in a health screening population. Atherosclerosis. 2014; 235 (2): 334–8. DOI: https://doi.org/10.1016/j.atherosclerosis.2014.05.927
21. Su Q., Chen H., Du S., Dai Y., Chen C., He T., et al. Association between serum bilirubin, lipid levels, and prevalence of femoral and carotid atherosclerosis: a population-based cross-sectional study. Arterioscler Thromb Vasc Biol. 2023; 43 (1): 136–45. DOI: https://doi.org/10.1161/ATVBAHA.122.318086
22. Rosly I.M., Vodolazhskaya M.G. Rules to interpret the biochemical analysis: Guide for physician. 2nd ed. Moscow: Meditsinskoe informatsionnoe agenstvo, 2014: 100 p. (in Russian)
23. Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A.J., et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021; 12: 585887. DOI: https://doi.org/10.3389/fendo.2021.585887
24. Li X., Wu Z., Chen Y., Cai R., Wang Z. Effect of acupuncture on simple obesity and serum levels of prostaglandin E and leptin in Sprague-Dawley rats. Comput Math Methods Med. 2021; 2021: 6730274. DOI: https://doi.org/10.1155/2021/6730274
25. Cochrane V., Shyng S.L. Leptin-induced trafficking of KATP channels: a mechanism to regulate pancreatic β-cell excitability and insulin secretion. Int J Mol Sci. 2019; 20 (11): 2660. DOI: https://doi.org/10.3390/ijms20112660
26. Gruzdeva O.V., Borodkina D.A., Belik E.V., Akbasheva O.E., Palicheva E.I., Barbarash O.L. Ghrelin physiology and pathophysiology: focus on the cardiovascular system. Kardiologiya [Cardiology]. 2019; 59 (3): 60–7. DOI: https://doi.org/10.18087/cardio.2019.3.10220 (in Russian)
27. Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Xu D., et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019; 2019: 5080843. DOI: https://doi.org/10.1155/2019/5080843
28. Pouwels S., Sakran N., Graham Y., Leal A., Pintar T., Yang W., et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022; 22 (1): 63. DOI: https://doi.org/10.1186/s12902-022-00980-1
29. Bacil G.P., Romualdo G.R., Rodrigues J., Barbisan L.F. Indole-3-carbinol and chlorogenic acid combination modulates gut microbiome and attenuates nonalcoholic steatohepatitis in a murine model. Food Res Int. 2023; 174 (pt 1): 113513. DOI: https://doi.org/10.1016/j.foodres.2023.113513
30. Wan X.Z., Li T.T., Zhong R.T., Chen H.B., Xia X., Gao L.Y., et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food Chem Toxicol. 2019; 128: 233–9. DOI: https://doi.org/10.1016/j.fct.2019.04.017
31. Liu J., Wu H., Zhang Y., Hu C., Zhen D., Fu P., et al. Phycobiliprotein peptide extracts from Arthrospira platensis ameliorate nonalcoholic fatty liver disease by modulating hepatic lipid profile and strengthening fat mobilization. Nutrients. 2023; 15 (21): 4573. DOI: https://doi.org/10.3390/nu15214573
32. Sadek K.M., Lebda M.A., Nasr S.M., Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother. 2017; 92: 1085–94. DOI: https://doi.org/10.1016/j.biopha.2017.06.023
33. Esener O.B.B., Gurel-Gurevin E., Isbilen-Basok B., Yigit F., Bilal T., Altiner A., et al. Spirulina platensis affects factors involved in spermatogenesis and increases ghrelin receptors in testis tissue of rats fed a high-fat diet. Pol J Vet Sci. 2017; 20 (3): 467–75. DOI: https://doi.org/10.1515/pjvs-2017-0056
34. Shang M.H., Sun J.F., Bi Y., Xu X.T., Zang X.N. Fluorescence and antioxidant activity of heterologous expression of phycocyanin and allophycocyanin from Arthrospira platensis. Front Nutr. 2023; 10: 1127422. DOI: https://doi.org/10.3389/fnut.2023.1127422
35. Jung F., Braune S., Jung C.H.G., Krüger-Genge A., Waldeck P., Petrick I., et al. Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells – an overview. Life (Basel). 2022; 12 (10): 1497. DOI: https://doi.org/10.3390/life12101497
36. Sotler R., Poljšak B., Dahmane R., Jukić T., Pavan Jukić D., Rotim C., et al. Prooxidant activities of antioxidants and their impact on health. Acta Clin Croat. 2019; 58 (4): 726–36. DOI: https://doi.org/10.20471/acc.2019.58.04.20
37. Yordi E.G., Pérez E.M., Matos M.J. Villares E.U. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. In: J. Bouayed, T. Bohn (eds). Nutrition, Well-Being and Health. London: IntechOpen, 2012: 236 p. ISBN: 978-953-51-0125- 3. DOI: https://doi.org/10.5772/1864