Evaluation of the combined effect of Arthrospira platensis biomass phycyanin concentrate and soy protein on male Wistar rats fed a high-fat diet with added cholesterol

Abstract

One of the approaches to the prevention and dietary correction of carbohydrate and lipid metabolism disorders is the development of new functional foods with the ingredients containing bioactive compounds with hypolipidemic and hypoglycemic properties. Soybean protein and biomass of Arthrospira platensis cyanobacteria containing phycobiliproteins (C-phycocyanin and allophycocyanin) are the sources of such bioactive compounds.

The aim of the research was to evaluate the combined effect of phycocyanin concentrate (in two dosages of 30 and 300 mg/kg body weight) and soy protein (50% of the protein in the diet) on disorders, induced in Wistar male rats by consumption of high-fat diet with 2% cholesterol.

Material and methods. A 108-day study was performed on 60 growing male Wistar rats. Animals of the control group K1 received a standard semi-synthetic diet. Disturbances in rats of the experimental group G2 were caused by increasing the proportion of the fat component in the diet (up to 29%), adding 2% cholesterol and replacing 20% of cornstarch with sucrose. In experimental groups G3, G4, and G5, 50% of casein in the high-fat diet was replaced with soy protein isolate. Additionally, phycocyanin concentrate was added to the diets of rats in groups G4 and G5 in quantities of 30 and 300 mg/kg of body weight (in terms of phycocyanin), respectively. In all animals, insulin resistance test was conducted, body composition was measured using magnetic resonance relaxometry, blood serum biochemical parameters of protein, lipid, purine metabolism and liver function, and the triglyceride and cholesterol liver levels were determined by spectrophotometric methods using a biochemical analyzer; leptin, ghrelin, C-peptide, insulin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase and hydroperoxides were determined in blood serum using enzyme immunoassay.

Results. The inclusion of only soy protein isolate into the high-fat diet with cholesterol had a hypoglycemic effect, preventing the development of insulin resistance, and led to a reliable decrease in blood level of lipid peroxides (p=0.011) compared to G2 group. The combined introduction of phycocyanin concentrate at a dose of 300 mg/kg body weight and soy protein into the diet significantly reduced blood levels of cholesterol (p=0.022), lipid peroxides (p=0.001) and ALT activity (p=0.032) compared to G2. At the same time, animals of both these groups retained disorders in hormonal status (increased leptin and ghrelin level), antioxidant status (elevated level of MDA and SOD) at the same level as for animals consuming high-fat diet with 2% cholesterol. Phycocyanin concentrate at a dosage of 30 mg/kg body weight together with soy protein in the diet prevented the development of insulin resistance (p=0.049) and reduced serum glucose level (p=0.025); exerted an antioxidant effect, normalizing the level of lipid peroxides (p=0.047), MDA (p=0.015) and SOD (p=0.038), significantly reduced the level of leptin (p=0.037) and ghrelin (p=0.028) compared to animals consuming a high-fat diet with 2% cholesterol.

Conclusion. The results characterizing the absence of a beneficial effect of phycocyanins at a dose of 300 mg/kg body weight indicate their possible prooxidant effect, what requires further experimental research. The data on the beneficial effects of a low dose (30 mg/kg body weight) of phycocyanins in combination with soy protein on lipid and carbohydrate metabolism may be of interest for the development of functional food ingredients with hypoglycemic and hypolipidemic properties.

Keywords: obesity; lipid metabolism; cholesterol; antioxidant; phycocyanin; Arthrospira platensis; soy protein

Funding. The research was carried out using subsidy for the implementation of a state assignment (Topic No. FGMF-2025-0014).

Conflict of interest. Authors declare no conflict of interest.

Contribution. Research design – Mazo V.K., Kochetkova A.A.; collection and processing of material – Sidorova Yu.S., Biryulina N.A., Petrov N.A., Guseva G.V.; statistical processing of results – Biryulina N.A., Sidorova Yu.S.; writing of the article – Mazo V.K., Sidorova Yu.S., Biryulina N.A.; editing of the article – Kochetkova A.A.; responsibility for the integrity of all parts of the article – all authors.

For citation: Biryulina N.A., Sidorova Yu.S., Zorin S.N., Petrov N.A., Guseva G.V., Mazo V.K., Kochetkova A.A. Evaluation of the combined effect of Arthrospira platensis biomass phycyanin concentrate and soy protein on male Wistar rats fed a high-fat diet with added cholesterol. Voprosy pitaniia [Problems of Nutrition]. 2025; 94 (2): 73–84. DOI: https://doi.org/10.33029/0042-8833-2025-94-2-73-84 (in Russian)

References

1. Chew N.W.S., Ng C.H., Tan D.J.H., Kong G., Lin C., Chin Y.H., et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023; 35 (3): 414–28.e3. DOI: https://doi.org/10.1016/j.cmet.2023.02.003

2. Quek J., Chan K.E., Wong Z.Y., Tan C., Tan B., Lim W.H., et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023; 8 (1): 20–30. DOI: https://doi.org/10.1016/S2468-1253(22)00317-X

3. Welsh A., Hammad M., Piña I.L., Kulinski J. Obesity and cardiovascular health. Eur J Prev Cardiol. 2024; 31 (8): 1026–35. DOI: https://doi.org/10.1093/eurjpc/zwae025

4. Gómez-Zorita S., Trepiana J., González-Arceo M., Aguirre L., Milton-Laskibar I., González M. et al. Anti-obesity effects of microalgae. Int J Mol Sci. 2019; 21 (1): 41. DOI: https://doi.org/10.3390/ijms21010041

5. Aissaoui O., Amiali M., Bouzid N., Belkacemi K., Bitam A. Effect of Spirulina platensis ingestion on the abnormal biochemical and oxidative stress parameters in the pancreas and liver of alloxan-induced diabetic rats. Pharm Biol. 2017; 55 (1): 1304–12. DOI: https://doi.org/10.1080/13880209.2017.1300820

6. Sadek K.M., Lebda M.A., Nasr S.M., Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother. 2017; 92: 1085–94. DOI: https://doi.org/10.1016/j.biopha.2017.06.023

7. Pankaj P.P. Cell suspension of Spirulina platensis partially attenuates alloxan induced alterations in carbohydrate and lipid metabolism in diabetic mice. Int J Pharm Sci Res. 2016; 7: 2805–12. DOI: https://doi.org/10.13040/IJPSR.0975-8232.7(7).2805-2812

8. Ou Y., Lin L., Pan Q., Yang X., Cheng X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environ Toxicol Pharmacol. 2012; 34 (3): 721–6. DOI: https://doi.org/10.1016/j.etap.2012.09.016

9. El-Sayed E.M., Hikal M.S., Khair B.E., El-Ghobashy R.E., El-Assar A.M. Hypoglycemic and hypolipidemic effects of Spirulina platensis, phycocyanin, phycocyanopeptide and phycocyanobilin on male diabetic rats. Arab Univ J Agric Sci. 2018; 26 (2A): 775–861. DOI: https://doi.org/10.21608/ajs.2018.28365

10. Nasirian F., Dadkhah M., Moradi-Kor N., Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes. 2018; 11: 375–80. DOI: https://doi.org/10.2147/DMSO.S172104

11. Cacciola N.A., De Cicco P., Milanović M., Milovanović I., Mišan A., Kojić D., et al. Role of Arthrospira platensis in preventing and treating high-fat diet-induced hypercholesterolemia in adult rats. Nutrients. 2024; 16 (12): 1827. DOI: https://doi.org/10.3390/nu16121827

12. Drapkina O.M., Kravchenko A.Ya., Budnevsky A.V., Kontsevaya A.V., Ryaskina M.S., Chernik T.A. Bilirubin and cardiovascular risk. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2021; 26 (9): 116–21. DOI: https://doi.org/10.15829/1560-4071-2021-4511 (in Russian)

13. Kim S.Y., Park S.C. Physiological antioxidative network of the bilirubin system in aging and age-related diseases. Front Pharmacol. 2012; 3: 45. DOI: https://doi.org/10.3389/fphar.2012.00045

14. Xiao C.W., Hendry A. Hypolipidemic effects of soy protein and isoflavones in the prevention of non-alcoholic fatty liver disease – a review. Plant Foods Hum Nutr. 2022; 77 (3): 319–28. DOI: https://doi.org/10.1007/s11130-022-00984-1

15. Hakkak R., Korourian S., Li W., Spray B., Twaddle N.C., Randolph C.E., et al. Dietary soy protein reverses obesity-induced liver steatosis and alters fecal microbial composition independent of isoflavone level. Front Nutr. 2024; 11: 1487859. DOI: https://doi.org/10.3389/fnut.2024.1487859

16. Kozaczek M., Bottje W., Kong B., Dridi S., Albataineh D., Lassiter K., et al. Long-term soy protein isolate consumption reduces liver steatosis through changes in global transcriptomics in obese Zucker rats. Front Nutr. 2020; 7: 607970. DOI: https://doi.org/10.3389/fnut.2020.607970

17. Jiang S., Ji S., Tang X., Wang T., Wang H., Meng X. A comparison study on the therapeutic effect of high protein diets based on pork protein versus soybean protein on obese mice. Foods. 2022; 11 (9): 1227. DOI: https://doi.org/10.3390/foods11091227

18. Biryulina N.A., Zorin S.N., Mazo V.K. Phycocyanin concentrates from Arthrospira platensis biomass: technology and composition characterization. Aktual’naya biotekhnologiya [Actual Biotechnology]. 2022; (1): 187–9. URL: https://elibrary.ru/item.asp?id=50113924 EDN: XPGCUC. (in Russian)

19. Minniti M.E., Ahmed O., Pedrelli M. Enzymatic quantification of liver lipids after Folch extraction. Methods Mol Biol. 2020; 2164: 101–8. DOI: https://doi.org/10.1007/978-1-0716-0704-6_11

20. Oda E. A decrease in total bilirubin predicted hyper-LDL cholesterolemia in a health screening population. Atherosclerosis. 2014; 235 (2): 334–8. DOI: https://doi.org/10.1016/j.atherosclerosis.2014.05.927

21. Su Q., Chen H., Du S., Dai Y., Chen C., He T., et al. Association between serum bilirubin, lipid levels, and prevalence of femoral and carotid atherosclerosis: a population-based cross-sectional study. Arterioscler Thromb Vasc Biol. 2023; 43 (1): 136–45. DOI: https://doi.org/10.1161/ATVBAHA.122.318086

22. Rosly I.M., Vodolazhskaya M.G. Rules to interpret the biochemical analysis: Guide for physician. 2nd ed. Moscow: Meditsinskoe informatsionnoe agenstvo, 2014: 100 p. (in Russian)

23. Obradovic M., Sudar-Milovanovic E., Soskic S., Essack M., Arya S., Stewart A.J., et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne). 2021; 12: 585887. DOI: https://doi.org/10.3389/fendo.2021.585887

24. Li X., Wu Z., Chen Y., Cai R., Wang Z. Effect of acupuncture on simple obesity and serum levels of prostaglandin E and leptin in Sprague-Dawley rats. Comput Math Methods Med. 2021; 2021: 6730274. DOI: https://doi.org/10.1155/2021/6730274

25. Cochrane V., Shyng S.L. Leptin-induced trafficking of KATP channels: a mechanism to regulate pancreatic β-cell excitability and insulin secretion. Int J Mol Sci. 2019; 20 (11): 2660. DOI: https://doi.org/10.3390/ijms20112660

26. Gruzdeva O.V., Borodkina D.A., Belik E.V., Akbasheva O.E., Palicheva E.I., Barbarash O.L. Ghrelin physiology and pathophysiology: focus on the cardiovascular system. Kardiologiya [Cardiology]. 2019; 59 (3): 60–7. DOI: https://doi.org/10.18087/cardio.2019.3.10220 (in Russian)

27. Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Xu D., et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019; 2019: 5080843. DOI: https://doi.org/10.1155/2019/5080843

28. Pouwels S., Sakran N., Graham Y., Leal A., Pintar T., Yang W., et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 2022; 22 (1): 63. DOI: https://doi.org/10.1186/s12902-022-00980-1

29. Bacil G.P., Romualdo G.R., Rodrigues J., Barbisan L.F. Indole-3-carbinol and chlorogenic acid combination modulates gut microbiome and attenuates nonalcoholic steatohepatitis in a murine model. Food Res Int. 2023; 174 (pt 1): 113513. DOI: https://doi.org/10.1016/j.foodres.2023.113513

30. Wan X.Z., Li T.T., Zhong R.T., Chen H.B., Xia X., Gao L.Y., et al. Anti-diabetic activity of PUFAs-rich extracts of Chlorella pyrenoidosa and Spirulina platensis in rats. Food Chem Toxicol. 2019; 128: 233–9. DOI: https://doi.org/10.1016/j.fct.2019.04.017

31. Liu J., Wu H., Zhang Y., Hu C., Zhen D., Fu P., et al. Phycobiliprotein peptide extracts from Arthrospira platensis ameliorate nonalcoholic fatty liver disease by modulating hepatic lipid profile and strengthening fat mobilization. Nutrients. 2023; 15 (21): 4573. DOI: https://doi.org/10.3390/nu15214573

32. Sadek K.M., Lebda M.A., Nasr S.M., Shoukry M. Spirulina platensis prevents hyperglycemia in rats by modulating gluconeogenesis and apoptosis via modification of oxidative stress and MAPK-pathways. Biomed Pharmacother. 2017; 92: 1085–94. DOI: https://doi.org/10.1016/j.biopha.2017.06.023

33. Esener O.B.B., Gurel-Gurevin E., Isbilen-Basok B., Yigit F., Bilal T., Altiner A., et al. Spirulina platensis affects factors involved in spermatogenesis and increases ghrelin receptors in testis tissue of rats fed a high-fat diet. Pol J Vet Sci. 2017; 20 (3): 467–75. DOI: https://doi.org/10.1515/pjvs-2017-0056

34. Shang M.H., Sun J.F., Bi Y., Xu X.T., Zang X.N. Fluorescence and antioxidant activity of heterologous expression of phycocyanin and allophycocyanin from Arthrospira platensis. Front Nutr. 2023; 10: 1127422. DOI: https://doi.org/10.3389/fnut.2023.1127422

35. Jung F., Braune S., Jung C.H.G., Krüger-Genge A., Waldeck P., Petrick I., et al. Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells – an overview. Life (Basel). 2022; 12 (10): 1497. DOI: https://doi.org/10.3390/life12101497

36. Sotler R., Poljšak B., Dahmane R., Jukić T., Pavan Jukić D., Rotim C., et al. Prooxidant activities of antioxidants and their impact on health. Acta Clin Croat. 2019; 58 (4): 726–36. DOI: https://doi.org/10.20471/acc.2019.58.04.20

37. Yordi E.G., Pérez E.M., Matos M.J. Villares E.U. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. In: J. Bouayed, T. Bohn (eds). Nutrition, Well-Being and Health. London: IntechOpen, 2012: 236 p. ISBN: 978-953-51-0125- 3. DOI: https://doi.org/10.5772/1864

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

SCImago Journal & Country Rank
Scopus CiteScore
CHIEF EDITOR
CHIEF EDITOR
Viktor A. Tutelyan
Full Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Scientific Director of the Federal Research Centre of Nutrition, Biotechnology and Food Safety (Moscow, Russia)

Journals of «GEOTAR-Media»